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The Cantor set is a topological space, constructed as a subspace of R,
with many interesting and surprising properties. It began appearing in the
mathematical literature before 1880, in connection with developments in
Topology and Integration, apparently first mentioned by Smith [Smi], later
by du Bois-Reymond [dBR], Volterra [Vol], and Cantor [Can]. It is now
named after Cantor.

1 Construction and basic properties

To begin we introduce some notation. Suppose that A ⊂ R can be written
as the union of finitely many closed, pairwise-disjoint intervals

A = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [an, bn].

For a natural number b ≥ 3 define ∗bA to be the union of the upper and
lower 1/b of each interval of A:

∗bA :=

[
a1, a1 +

1

b
(b1 − a1)

]⋃[
a1 +

b− 1

b
(b1 − a1), b1

]⋃
· · ·

· · ·
⋃[

an, an +
1

b
(bn − an)

]⋃[
an +

b− 1

b
(bn − an), bn

]
.

Clearly ∗bA is again the union of finitely many closed, pairwise-disjoint in-
tervals, so we may apply the same construction again, forming a sequence

A, ∗bA, ∗b(∗bA) =∗2b A, ∗3bA, . . .

of unions of increasingly many disjoint intervals, of shrinking length.
We will only use this construction in the case our initial set A is the unit

interval [0, 1]. In the next result we collect some easy observations about
this operation.
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Lemma 1.1. Let n ∈ N. The set ∗nb [0, 1]:

(i) is the union of 2n disjoint closed intervals;

(ii) consists of intervals of length b−n;

(iii) is constructed from ∗n−1
b [0, 1] by removing 2n−1 disjoint open intervals,

each of length (b− 2)/bn;

(iv) consists of intervals with left endpoints in the set

Lb
n =

{c1
b
+

c2
b2

+ · · ·+ cn
bn

: ci ∈ {0, b− 1}
}
.

Proof. Points (i)–(iii) are immediate from the definition. For (iv) we proceed
by induction. It is clear that the set of left endpoints of intervals in ∗1b [0, 1]
is {0, b−1

b } so the claim is true for k = 1. Now suppose the claim holds

for n = k. By definition of ∗k+1
b [0, 1] from ∗kb [0, 1] each interval of ∗kb [0, 1],

hence each element c ∈ Lb
k, determines two intervals of ∗k+1

b [0, 1], hence two
elements of Lb

k+1. The first of these elements is c again, while the second is

c+ b−1
bk+1 . This completes the induction and establishes the claim.

It is most common to work with b = 3 or b = 10. Here is an illustration
of the first few steps of the process in the case b = 3.

Definition 1.2. The Cantor set (in base b) is defined as

Cantorb := ∩n∈N∗nb [0, 1].

1.1 Properties of base b representations

Our next aim is to answer the question what is in Cantorb? To discuss this
first we recall some facts about base b representations of numbers. If b ≥ 2
is a natural number then any x ∈ R can be represented as

x = σ
∑
k∈Z

akb
k
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where σ ∈ {+,−} is the sign, ak ∈ {0, 1, 2, . . . , b − 1} and there is n0 ∈ Z
such that ak = 0 for all k > n0, so the infinite sum clearly converges. We
write this number using positional notation as

x = σan0an0−1. . .a2a1a0.a−1a−2a−3. . .[b].

Note that to avoid ambiguity in this notation when b ≥ 10 one may need to
introduce additional symbols for the digits bigger than 9, since for example
2113[b] = 2b3 + b2 + b+ 3; the number 2b2 + 11b+ 3 must be written 2χ3[b]
where χ represents the eleventh base b digit. It is important to remember
that the representation of a number in this way is not unique (for example
1[10] = 0.999 . . .[10]); this will be investigated in Lemma 1.4.

We will only be discussing numbers in the interval [0, 1], so it is con-
venient to make a slight change to the above convention and represent a
number x ∈ [0, 1] in base b as

x =
∑
k∈N

ckb
−k = 0.c1c2c3 . . .[b]

(so ck = a−k).

Remark 1.3. Suppose x =
∑

k∈N ckb
−k and c1 = c2 = · · · = cm = 0, so

in positional notation x = 0.00. . .0cm+1cm+2 . . .[b]. In this case the largest x
can be is when the non-zero ck are all equal to b− 1, so

x =
∑
k∈N

ckb
−k ≤

∞∑
k=m+1

b− 1

bk
=

b− 1

bm+1

∞∑
l=0

1

bl
=

b− 1

bm+1

1

1− 1
b

=
b− 1

bm+1

b

b− 1

=
1

bm
.

On the other hand, if x =
∑

k∈N ckb
−k and ck = 0 for all k > m, but

cm ̸= 0, then the smallest x can be is when cm = 1 and ck = 0 for all
k ∈ N \ {1}, so x ≥ 1/bm.

Lemma 1.4. Let b ≥ 2 be a natural number, B = {0, 1, 2, . . . , b − 1} and
BN the collection of all sequences of elements of B. The function

β : BN → [0, 1]; β
(
(ck)k∈N

)
:=
∑
k∈N

ck
bk

has the following properties:

(a) β is surjective;
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(b) for c, d ∈ BN with c ̸= d the following are equivalent, characterising
when β fails to be injective:

(i) β(c) = β(d);

(ii) there exists m ∈ N such that cn = dn for all n < m, cm − dm = 1,
and cn = 0 for all n > m while dn = b − 1 for all n > m (or
vice-versa).

In particular, an element of [0, 1] has either one or two preimages.

Proof. (a) Let x ∈ [0, 1). Choose c1 ∈ B to be the largest element for which
c1
b ≤ x. Define inductively (with the help of Remark 1.3) cn+1 to be the
largest element of B for which

0 ≤ x−
n+1∑
k=1

ck
bk

<
1

bn+1
. (1)

This gives a well-defined sequence c = (ck)k∈N and it is immediate from the
definition of c and equation (1) that

∣∣x− β(c)
∣∣ = lim

n→∞
x−

n∑
k=1

ck
bk

< lim
n→∞

1

bn
= 0

(we can remove the absolute value because the partial sum is by definition
no greater than x). Hence x = β(c).

For x = 1 consider the sequence c ∈ BN with ck = b − 1 for all k ∈ N.
Then

β(c) =
∑
k∈N

b− 1

bk
= (b− 1)

1

b− 1
= 1.

(b) (ii) =⇒ (i) Suppose that c and d are as in (ii), so

β(d) =
∑
k∈N

dk
bk

=
m−1∑
k=1

dk
bk

+
dm
bm

+
∞∑

l=m+1

dl
bl

=
m−1∑
k=1

ck
bk

+
dm
bm

+
∞∑

l=m+1

b− 1

bl

=

m−1∑
k=1

ck
bk

+
dm
bm

+
1

bm

=

m−1∑
k=1

ck
bk

+
dm + 1

bm

=
m∑
k=1

ck
bk

= β(c),
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using Remark 1.3.
(i) =⇒ (ii) Suppose β(c) = β(d) but c ̸= d and let m ∈ N be the

smallest index for which cm ̸= dm. Without loss of generality we may
assume cm > dm. Then β(c) = β(d) implies

cm − dm
bm

+
∞∑

k=m+1

ck
bk

=
∞∑

l=m+1

dl
bl
. (2)

We have cm−dm
bm ≥ 1

bm and by Remark 1.3 also
∑∞

l=m+1
dl
bl
≤ 1

bm . Hence
the only way for (2) to hold is if cm − dm = 1, cn = 0 for all n > m,
and dn = b − 1 for all n > m. We have shown that the only two possible
preimages of x ∈ [0, 1] are the ones given in (ii).

The above lemma can be extended to give a surjection onto R, but the
definition of the domain needs to be refined.

Corollary 1.5. The restriction of β to a subset B1 ⊆ B such that no two
elements of B1 have a difference of 1 is injective. In particular, for b ≥ 3
the restriction of β to {0, b− 1}N is injective.

Proof. Follows from Lemma 1.4(b).

1.2 Elements of Cantor sets

Proposition 1.6. Let x ∈ [0, 1]. The following are equivalent:

(i) x ∈ Cantorb;

(ii) x can be written in base b as x =
∑

k∈N
ck
bk

where ck ∈ {0, b− 1}, that
is x = β(c) for some c ∈ {0, b− 1}N.

Proof. Since an element x ∈∗nb [0, 1] lies in in one of the intervals which makes
up this set, it follows from the definition of ∗nb [0, 1] that l ≤ x ≤ l + b−n,
where l ∈ Lb

n (see Lemma 1.1(ii)). By Remark 1.3 and Lemma 1.1(iv) it
follows that x =

∑
k∈N

ck
bk

where ci ∈ {0, b − 1} for 1 ≤ i ≤ n. The claimed

equivalence follows because Cantorb is the intersection of ∗nb [0, 1].

We temporarily work with ordinary base ten numbers (b = 10) in order to
illustrate the construction. The elements of ∗110 [0, 1] are elements of [0, 1

10 ]∪
[ 910 , 1], so in ordinary decimal form (positional notation base 10) have the
form

0.0c2c3c4 . . .[10] or 0.9c2c3c4 . . .[10] .
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The elements of ∗210 [0, 1] are elements of [0, 1
102

]∪ [ 9
102

, 1
10 ]∪ [

9
10 ,

91
102

]∪ [ 99
102

, 1],
so in ordinary decimal form (positional notation base 10) have the form

0.00c3c4 . . .[10] or 0.09c3c4 . . .[10] or 0.90c3c4 . . .[10] or 0.99c3c4 . . .[10] .

The elements of ∗310 [0, 1] have the form

0.000c4 . . .[10] or 0.009c4 . . .[10] or 0.090c4 . . .[10] or 0.099c4 . . .[10]

0.900c4 . . .[10] or 0.009c4 . . .[10] or 0.990c4 . . .[10] or 0.999c4 . . .[10] .

This pattern continues.

Corollary 1.7. The Cantor set Cantorb is uncountable.

Proof. Since b is at least 3 Proposition 1.6 implies that every element of
Cantorb is equal to β(c) where c ∈ {0, b − 1}N, and by Corollary 1.5 β is
injective when restricted to this set. Hence there is a bijective correspon-
dence between Cantorb and {0, b − 1}N, so it suffices to see that the latter
set is uncountable. This is a standard diagonal argument. Suppose there
is a bijection between N and {0, b − 1}N, and let c(n) denote the image of

n ∈ N under this bijection. Define d ∈ {0, b− 1}N by requiring dk ̸= c
(k)
k (so

if c
(k)
k = 0 then dk = b − 1 and vice-versa). Then d ̸= c(n) for all n ∈ N as

dn ̸= c
(n)
n , which means that the supposed bijection cannot exist.

Remark 1.8. The above result is quite surprising, because it seems like we
removed a lot of the interval [0, 1] in constructing Cantorb. Indeed, taking

b = 10 we see, using Lemma 1.1, that in constructing ∗nb [0, 1] from ∗n−1
b [0, 1]

we remove a total length of 2n−1 8
10n . Hence the total length removed in the

construction of Cantor10 is

∞∑
n=1

2n−1 8

10n
=

∞∑
n=1

2n4

2n5n
=

4

5

∞∑
n=0

1

5n
=

4

5

(
1

1− 1
5

)
= 1.

So after removing a total length equal to the length of the original interval
[0, 1] we are still left with uncountably many points.

Remark 1.9. It follows immediately from Proposition 1.6 and Lemma 1.1(iv)
that the left and right endpoints of all intervals involved in the construction
Cantorb belong to Cantorb. An example of one of the uncountably many
other points in Cantorb is

1

11
= 0.090909 . . .[10]
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belongs to Cantor10, but is not the endpoint of any intervals involved in the
construction.

Remark 1.10. Proposition 1.6 tells us that each element of Cantorb can
be identified with a sequence, where each term of the sequence is either 0 or
b− 1 (see the proof of Corollary 1.7). In other words, we have a bijection

Cantorb ←→ {0, 1}N,

induced by β. This bijection identifies a sequence a = (a1, a2, a3, . . .) ∈
{0, 1}N (so an ∈ {0, 1}) with the base b number 0.d1d2d3 . . .[b], where the
digits are di = (b − 1)ai, which belongs to Cantorb by Proposition 1.6. We
will show this identification is correct from a topological point of view in
Theorem 3.5.

We close this section by recording some facts about arithmetic and Can-
tor sets. The first is that the average of any pair of elements of Cantor5
does not belong to Cantor5, but this is not true for Cantor3, which means
Cantor sets in different bases behave differently under certain arithmetic
operations. Suppose x, y ∈ Cantor5 are distinct points, so in the base 5
expansions x =

∑
k∈N ck5

−k and y =
∑

k∈N dk5
−k there is a smallest n ∈ N

such that ck ̸= dk. This means that the nth digit of the average 1
2(x + y)

will be a 2, or a 3 if there is carrying in the addition, so the average does
not belong to Cantor5 by Proposition 1.6. On the other hand, 0 and 2/3
both belong to Cantor3 (they are left endpoints from the first step) and their
average is 1/3, which also belongs to Cantor3 — it is a right endpoint of the
first step.

Second, we claim that Cantor3 + Cantor3 = [0, 2]. That Cantor3 +
Cantor3 ⊆ [0, 2] is clear. To show the reverse inclusion we will show the
equivalent statement that [0, 1] ⊆ 1

2Cantor3 +
1
2Cantor3. Let x ∈ [0, 1] and

write x in base 3 as

x =
∑
k∈N

xk
3k

, xk ∈ {0, 1, 2}.

Now for k ∈ N define

yk :=

{
0 if xk = 0,

1 if xk ∈ {1, 2},
and zk :=

{
0 if xk ∈ {0, 1},
1 if xk = 2.

Hence yk + zk = xk for each k ∈ N. Also y =
∑

k∈N yk3
−k ∈ 1

2Cantor3
because

2y =
∑
k∈N

2yk
3k

, 2yk ∈ {0, 2},
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and similarly z =
∑

k∈N zk3
−k ∈ 1

2Cantor3. We have

y + z =
∑
k∈N

yk
3k

+
∑
k∈N

zk
3k

=
∑
k∈N

yk + zk
3k

=
∑
k∈N

xk
3k

= x.

This completes the proof of the second fact.
The third arithmetic fact is that ∗nb [0, 1] = Lb

n+[0, 1
bn ], which is immediate

from the definitions. Indeed, an element z ∈∗nb [0, 1] must be in one of the
intervals which makes up this set, hence can be written as x + y, where
x ∈ Lb

n is the left endpoint of the interval containing z and y ∈ [0, 1
bn ] by

Lemma 1.1(ii).

2 Topological properties

The Cantor sets Cantorb are topological spaces in the subspace topology
from R (or from [0, 1]). Now we investigate topological properties of Cantor
sets. The first lemma is immediate from the topological properties of R, we
state it for the record.

Lemma 2.1. The Cantor sets Cantorb are metrisable and separable.

Proposition 2.2. The Cantor sets Cantorb are closed.

Proof. By construction each set ∗nb [0, 1] is a finite union of closed intervals,
therefore is closed. Hence Cantorb is closed as the intersection of a family
of closed sets.

Corollary 2.3. The Cantor sets Cantorb are compact.

Proof. The Cantor sets are closed subsets of the compact set [0, 1], hence
compact.

We now give some more information about neighbourhoods in Cantor
sets.

Proposition 2.4. (i) Every neighbourhood of a point x ∈ Cantorb con-
tains a set of the form Cantorb∩ [l, l+ b−n], where l ∈ Cantorb is a left
endpoint of an interval from the construction of Cantorb and n ∈ N.

(ii) The sets of the form in (i) form a basis for the topology on Cantorb
which consists of closed-open sets.
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Proof. (i) Let N be a neighbourhood of x in the topology of Cantorb. Using
the definition of the subspace topology of Cantorb inherited from R there is
ϵ > 0 such that Cantorb∩(x−ϵ, x+ϵ) ⊆ N . Choosing n ∈ N such that b−n <
ϵ then, since x ∈∗nb [0, 1], there is a left end-point l ∈ Lb

n with x ∈ [l, l+ b−n]
(see Lemma 1.1). By our choice of n we have [l, l+ b−n] ⊆ (x− ϵ, x+ ϵ), so
Cantorb ∩ [l, l + b−n] ⊆ N .

(ii) We first show the given sets are closed and open. It follows from
Lemma 1.1 that if l ∈ Lb

n is a left endpoint of one of the intervals in the
construction of Cantorb then for n ≥ 1 we have

Cantorb ∩ [l, l + b−n] = Cantorb ∩ (l − b−n, l + 2b−n).

This is obviously both closed and open in the topology of Cantorb, which is
the subspace topology inherited from R. To see that the sets form a basis
suppose U ⊆ Cantorb is open. Then, by (i), for each x ∈ U there is a set
Bx = Cantorb ∩ [l, l + b−n] such that x ∈ Bx ⊆ U . Hence

U ⊆ ∪x∈UBx ⊆ U,

so U = ∪x∈UBx. This shows that sets of the form Cantorb ∩ [l, l+ b−n] form
a basis for the topology of Cantorb.

An isolated point of a subset S of a topological space X is a point x ∈ S
which has a neighbourhood containing no points of S except for x; equiva-
lently {x} is an open set in the subspace topology of S.

Proposition 2.5. The Cantor set Cantorb has no isolated points.

Proof. Take x ∈ Cantorb. By definition of the subspace topology it suffices
to show that for any ϵ > 0 there exists y ∈ Cantorb ∩ (x− ϵ, x+ ϵ). Choose
n ∈ N such that 1/bn < ϵ. Suppose x =

∑
k∈N ckb

−k where ck ∈ {0, b − 1}
and define y ∈ Cantorb by

y =
∑
k∈N

dkb
−k, where dk :=

{
ck if k ̸= n

(b− 1)− ck if k = n.

(So the base b expansion of y is the same as that of x except for the nth
digit, which is the element of {0, b−1}\{cn}.) Then x ̸= y and y ∈ Cantorb
by Proposition 1.6, while Remark 1.3 tells us that |x − y| < 1/bn < ϵ as
required.

A subset A of a topological space X is called perfect if A is closed and
has no isolated points; equivalently each point of A is an accumulation point
of A, or A is dense in itself.
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Corollary 2.6. The Cantor sets Cantorb are perfect.

A set is called nowhere dense if its closure has empty interior.

Proposition 2.7. The Cantor sets Cantorb are nowhere dense.

Proof. It suffices to show that Cantorb does not contain a non-empty open
interval. Suppose c, d ∈ [0, 1] with c < d and choose n ∈ N with b−n <
d − c. By Lemma 1.1 (c, d) is not contained in ∗nb [0, 1], so is not contained
in Cantorb.

The above result can also be deduced from the computation of the
“length” of Cantorb in Remark 1.8: this computation (can be formalised
so it) shows that the Lebesgue measure of Cantorb is 0, which is incompati-
ble with Cantorb containing a non-empty open interval.

Recall that a subset Y of a topological space is disconnected if it can
be written as Y = A ∪ B, where A and B are nonempty disjoint open
(equivalently closed) sets. A topological space is called totally disconnected
if the only nonempty connected subsets are singletons. A topological space
X is called 0-dimensional1 if each point has a neighbourhood base consisting
of open-closed sets; equivalently, for every x ∈ X and closed set A not
containing x there is an open-closed set which contains x and does not meet
A. Since {x} is closed for each x ∈ Cantorb it is clear that 0-dimensional is
a stronger property than total disconnectedness.

Proposition 2.8. The Cantor sets Cantorb are 0-dimensional, hence totally
disconnected.

Proof. Proposition 2.4 shows that every point of Cantorb has a neighbour-
hood base consisting of open-closed sets.

3 Homeomorphisms

Finally, we prove the existence of some homeomorphisms involving Cantor
sets. The first shows that Cantor sets behave like a fractal.

Proposition 3.1. Let n ∈ N and l ∈ Lb
n a left endpoint of one of the

intervals [l, l+b−n] which make up ∗nb [0, 1]. The intersection Cantorb∩ [l, l+
b−n] is homeomorphic to Cantorb.

1This definition is taken from [Wil, Definition 29.4]. There are other notions of zero-
dimensional topological space, which may not be equivalent to the one here in general.
However, since Cantor sets are separable and metrisable the notions coincide.
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Proof. Consider the map

[l, l + b−n]→ [0, b−n]; x 7→ x− l.

This map is clearly a homeomorphism. Also, since l has the form stated in
Lemma 1.1, we see from Remark 1.3 that the given map does not change
any base b digit after the nth, while the first n base b digits of l are the same
as the first n base b digits of every element of [l, l+ b−n]. It follows that the
given map restricts to a homeomorphism

Cantorb ∩ [l, l + b−n]→ Cantorb ∩ [0, b−n]; x 7→ x− l.

Now consider the map

Cantorb ∩ [0, b−n]→ Cantorb; y 7→ bny,

which simply ‘removes’ the first n base b digits of y (all of which are 0). It
is clear that this map is a homeomorphism between the stated sets. The
composition of these two homeomorphisms gives the statement.

The following result means that, from a topological point of view, there
is no problem with referring to the Cantor set.

Proposition 3.2. For any two bases b1 and b2 (b1, b2 ∈ N and b1, b2 ≥ 3)
the Cantor sets Cantorb1 and Cantorb2 are homeomorphic.

Proof. Consider the natural map

θ : Cantorb1 → Cantorb2 ; θ

(∑
k∈N

ckb
−k
1

)
:=
∑
k∈N

(
b2 − 1

b1 − 1
ck

)
b−k
2 .

Since ck ∈ {0, b1 − 1} we have b2−1
b1−1ck ∈ {0, b2 − 1}, so the definition makes

sense. It is immediate from Proposition 1.6 that θ is bijective. To show
continuity of θ take ϵ > 0. Find n ∈ N such that b−n

2 < ϵ, then let δ = b−n
1 .

If x, y ∈ Cantorb1 and |x − y| < δ then, writing ck and dk for the base b1
digits of x and y respectively, we must have ck = dk for all k ≤ n (see
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Remark 1.3), so

∣∣θ(x)− θ(y)
∣∣ = ∣∣∣∣∣∑

k∈N

(
b2 − 1

b1 − 1
ck

)
b−k
2 −

∑
k∈N

(
b2 − 1

b1 − 1
dk

)
b−k
2

∣∣∣∣∣
=

∣∣∣∣∣∑
k∈N

b2 − 1

b1 − 1
b−k
2 (ck − dk)

∣∣∣∣∣
=

b2 − 1

b1 − 1

∣∣∣∣∣∑
k∈N

b−k
2 (ck − dk)

∣∣∣∣∣
<

b2 − 1

b1 − 1
b−n
2 <

b2 − 1

b1 − 1
ϵ,

where the penultimate inequality follows from Remark 1.3. This proves that
θ is continuous. The same argument proves continuity of θ−1, as

θ−1

(∑
k∈N

ckb
−k
2

)
=
∑
k∈N

(
b1 − 1

b2 − 1
ck

)
b−k
1

(the roles of b1 and b2 are exchanged). Thus θ is a homeomorphism. (In the

proof of continuity of θ we chose x and y in the same interval of
∗nb1 [0, 1],

which ensures θ(x) and θ(y) are in the same interval of
∗nb1 [0, 1], therefore

the distance between θ(x) and θ(y) is at most b−n
2 .)

In fact it is possible to prove much more than the above result; the proof
of the following result, sometimes called Brouwer’s Theorem, can be found
in [Wil, Theorem 30.3].

Theorem 3.3. Any two totally disconnected, perfect, compact metric spaces
are homeomorphic.

The following immediate consequence is due to Hausdorff [Hau].

Corollary 3.4. The Cantor set is, up to homeomorphism, the unique totally
disconnected, perfect, compact metric space.

In Remark 1.10 we saw that Cantor sets can be written as an infinite
product. We now show that this bijection is a homeomorphism.

Theorem 3.5. The Cantor set is homeomorphic to the product space {0, 1}N.
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Proof. Consider the map induced by β, mentioned in Remark 1.10

β̃ : {0, 1}N → Cantorb; (ak)k∈N 7→
∑
k∈N

ak(b− 1)

bk
.

Since {0, 1}N is compact and Cantorb is Hausdorff a standard topological
result (see for example [Wil, Theorem 17.14]) says that to prove β̃ is a
homeomorphism we only need to prove it is continuous. Choose x ∈ {0, 1}N
and n ∈ N. We want to find an open neighbourhood N of x such that if
y ∈ N then |β̃(x)− β̃(y)| < b−n; this will show β̃ is continuous at x, hence it
is continuous as x is arbitrary. Define N := ∩ni=1π

−1
i ({xi}), which is an open

set in the product space {0, 1}N. (Here πi : {0, 1}N → {0, 1}; (xk)k∈N 7→ xi is
the canonical projection.) Then y ∈ N means xi = yi for 1 ≤ i ≤ n, therefore
|β̃(x)− β̃(y)| < b−n by Remark 1.3. This shows that β̃ is continuous, hence
a homeomorphism.

Corollary 3.6. The Cantor set is (homeomorphic to) an abelian compact
topological group.

Proof. The set {0, 1} = Z2 is an abelian compact topological group, there-
fore so is the Cantor set by Theorem 3.5.

A topological space X is called homogeneous if for any two points x, y ∈
X there is a homeomorphism on X which maps x to y.

Proposition 3.7. The Cantor set is homogeneous.

Proof. For any topological group G and any g ∈ G the map

G→ G; h 7→ gh

is a homeomorphism (see [Wil, Section 13.G]). In particular, by Corol-
lary 3.6, for any pair of elements x, y of the Cantor set there is a home-
omorphism z 7→ yx−1z. This homeomorphism clearly maps x to y.

Note that the above result shows that there is nothing topologically
special about the endpoints of the intervals involved in the construction of
the Cantor set.

To finish we quote a result of Alexandroff and Urysohn which gives a
universal property of the Cantor set (see [Wil, Theorem 30.7]).

Theorem 3.8. Every compact metric space is a continuous image of the
Cantor set.
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[Hau] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig (1914).

[Smi] H. J. S. Smith, On the integration of discontinuous functions, Pro-
ceedings of the London Mathematical Society, First series, 6 (1874),
140–153.

[Vol] V. Volterra (1881), Alcune osservazioni sulle funzioni punteggiate
discontinue, Giornale di Matematiche 19 (1881), 76–86.

[Wil] S. Willard, General Topology, Series in Mathematics, Addison–
Wesley (1970).

14


	Construction and basic properties
	Properties of base b representations
	Elements of Cantor sets

	Topological properties
	Homeomorphisms

