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Abstract

The Banach–Tarski paradox is often stated as follows: given a solid
ball in three dimensions it is possible to cut the ball into a finite number
of pieces and rearrange these pieces to make two balls, each identical
to the original. The result was proved by Banach and Tarski (1924),
building on earlier work of Hausdorff (1914). The paradox, along with
the fact that no such paradox exists in one or two dimensions, hints at
the subtle nature of the concept of volume as well as deep properties of
the group of translations and rotations of three-dimensional space.

In these notes we develop the background material and explore some
earlier paradoxes, before proving the Banach–Tarski paradox. The fi-
nal part of the course will discuss how the Banach–Tarski paradox is
related to the problem of defining a notion of volume which matches our
intuition.





Introduction

How can one give a rigorous definition of volume which matches with our
intuition for how volume behaves? More formally: is it possible to define a
notion of “volume” for all subsets of Rn which is invariant under translation
and rotation, gives the unit cube a volume of one, and such that the volume
of the union of disjoint sets is the sum of the volumes of the individual sets?

In 1901 Lebesgue [4] introduced a way of defining the volume of subsets of
Rn, now called Lebesgue measure, which satisfies most of the required proper-
ties. However, Vitali [8] discovered in 1905 that not every set has a well-defined
Lebesgue measure, and his construction showed that there is only hope for a
positive answer if one restricts to finite unions of sets. Thus the question re-
mained: can one define a measure on every subset of Rn which satisfies the
properties mentioned above (and extends Lebesgue measure)?

To show that such measures cannot exist mathematicians, such as Haus-
dorff [3], discovered paradoxes — cutting shapes in to pieces and moving those
pieces with rigid motions to form new shapes with a different volume to the
original. The most striking of these paradoxes was published in 1924 by Ba-
nach and Tarski [1], which is often stated in the form: it is possible to take a
solid ball in R3, divide the ball in finitely many pieces, and move those pieces
using only rigid motions to form two solid balls, each identical to the original
ball. These results are called paradoxes because only rigid motions are used,
and intuition suggests that rigid motions should preserve volume.

The impact of these discoveries is far-reaching. The Banach–Tarski para-
dox solves the problem above about defining measures in R3 (and the same
idea works for Rn when n ≥ 3), and the techniques involved in proving the
Banach–Tarski paradox led von Neumann to introduce the notion of amenabil-
ity [9], now an important notion in many areas of mathematics.
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Information

These notes formed the basis of a course at the University of Bia lystok in
November–December 2020, based on earlier notes made while supervising a
Bachelor’s project at Chalmers University of Technology and the University
of Gothenburg.

The course was delivered in 30 hours of lectures and 30 hours of problem
classes. Some necessary results were given as exercises during lectures, to
be attempted by students and discussed during the problem classes; here the
exercises are followed by sample solutions.

The following are suggested as references and/or further reading.

• Wagon [10] Updated version of Wagon’s comprehensive book on the
topic.

• Weston [11] Notes online containing many explicit computations.

• Cohn [2] Measure theory text; see Appendix G for a discussion of the
Banach–Tarski paradox.

• Runde [5] Contains an introductory section on the Banach–Tarski para-
dox.
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Chapter 1

Groups and actions

We assume that the reader is familiar with basic group theory; many references
are available for the reader who lacks this background, for example [6].

1.1 Examples

The following examples of groups are important for us later.

Example 1.1.1. The collection of all real, invertible n×n matrices is a group
under matrix multiplication, called the general linear group (of degree n), and
denoted GL(n,R); equivalently GL(n,R) := {T ∈ Rn×n : det(T ) 6= 0}.

A basis {e1, . . . , em} of a subspace V of Rn is said to be orthonormal if
〈ei, ej〉 = 0 when i 6= j and 〈ei, ei〉 = 1, where 〈·, ·〉 denotes the usual dot
product on Rn.

Exercise 1.1.2. Let V be a subspace of Rn with orthonormal basis B =
{e1, . . . , em}, and let T : V → V be a linear operator, with matrix TB relative
to the orthonormal basis B. Show that the following are equivalent:

(i) 〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ V ;

(ii) the columns (or rows) of TB are mutually orthogonal;

(iii) T tBTB = In.

Such an operator is called orthogonal.

Example 1.1.3. The special orthogonal group (of degree n) is the subgroup
SO(n,R) of GL(n,R) given by

SO(n,R) := {T ∈ GL(n,R) : det(T ) = 1 and T is orthogonal}.
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2 CHAPTER 1. GROUPS AND ACTIONS

Exercise 1.1.4. Show that SO(n,R) is a group.

We will see below that the elements of these groups can be viewed as
“moving” shapes in Rn. In particular, we will show that SO(3,R) represents
the rotations of the unit ball that will be used in the Banach–Tarski paradox.
For now, let us try to develop some intuition for how these matrix groups act.

Exercises 1.1.5. The introduction states that the Banach–Tarski paradox
uses “rigid motions” (i.e. distance-preserving maps) to rearrange the pieces of
the unit ball.

(i) What rigid motions are not represented by elements of SO(n,R)?

(ii) What rigid motions are not represented by elements of GL(n,R)?

(iii) Does the collection of all rigid motions form a group?

We will not use reflections in our proof of the Banach–Tarski paradox,
working in a subgroup of the Euclidean group (which contains all rigid mo-
tions) called the Euclidean motion group which does not contain reflections.

Next we introduce free groups, which will play an important role in the
Banach–Tarski paradox. Later we will work with free groups as words on a
generating set, so this is how we define them; see [6, Chapter 6] for alternative
descriptions.

Example 1.1.6. Let S = {a1, . . . , an} be a set with n elements, and write
S−1 := {a−11 , . . . , a−1n } for the set of formal inverses of elements of S. A word
on S is a finite product s1s2 · · · sm (m ≥ 1), where si ∈ S ∪ S−1; a reduced
word on S is a finite product s1s2 · · · sm (m ≥ 1) such that si is never adjacent
to its inverse. The free group on n generators, denoted Fn, is defined to be
the group of all reduced words on S ∪ S−1, with the group operation given
by concatenation and reduction: if w1 and w2 are reduced words then their
product is the reduced word obtained from w1w2; the identity element is the
empty word, denoted e, and the inverse of s ∈ S is s−1 ∈ S−1. Similarly one
defines the free group F∞, by taking S to be a countable set.

Though we have used S = {a1, . . . , an} in the definition of free groups of
arbitrary degree it is conventional to write a and b for the free generators of
F2.

Exercises 1.1.7. (i) Give an example of two pairs of reduced words v1, v2
and w1, w2 in F3 such that v1v2 = w1w2.
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(ii) Show that having the same reduced word is an equivalence relation on
the collection of words on S = {a1, . . . , an}. Deduce that the group op-
erations on Fn are well-defined.

(iii) Which familiar group is isomorphic to F1?

(iv) Explain why Fn is countable for any n ∈ N.

(v) Let m,n be natural numbers with 2 ≤ m ≤ n. Define an injective group
homomorphism from Fm to Fn. Can you find an injective group homo-
morphism going the other way (i.e. can we identify Fn with a subgroup
of Fm)?

The final part of the above exercise shows one of the non-intuitive prop-
erties of free groups; we will exploit another strange property of F2 later to
derive the Banach–Tarski Paradox.

1.2 Group actions

Many groups arise naturally as collections of invertible maps on some other
object. This concept is formalised as a group action.

Definition 1.2.1. Let G be a group and X a set. We say G acts on X if
there is a map · : G×X → X such that:

(i) e · x = x for all x ∈ X;

(ii) g · (h · x) = (gh) · x for all g, h ∈ G and all x ∈ X.

Exercise 1.2.2. Let G be a group. Give an example of an action of G on
itself.

Example 1.2.3. Let n be a natural number and GL(n,R) the corresponding
general linear group. Define · : GL(n,R) × Rn → Rn to be the usual matrix-
vector multiplication. This is an action of GL(n,R) on Rn because of the
properties of matrix multiplication.

Since SO(3,R) is a subgroup of GL(3,R) it follows from Example 1.2.3
above that SO(3,R) acts on R3. This action is very important for the Banach–
Tarski paradox, so we study it further now.
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Exercise 1.2.4. Let Sn be the unit sphere in Rn, that is

Sn := {x ∈ Rn : ‖x‖ = 1},

where ‖ · ‖ denotes the Euclidean distance in Rn.1 Show that the restriction
of the action of SO(n,R) on Rn to Sn is an action of SO(n,R) on Sn.

Exercise 1.2.5. Let X be a set and G a group acting on X. Define a relation
∼ on X by

x ∼ y ⇐⇒ y = g · x for some g ∈ G.

Show that this relation is an equivalence relation. The equivalence classes of
this relation are called the orbits of the action.

Our final aim in this section is to prove that the group which acts on R3

by rotations about some line through the origin is the group SO(3,R). The
development of these results is based on [2, Appendix G].

Exercise 1.2.6. Let T be an orthogonal operator on Rn.

(i) Show that det(T ) is 1 or −1.

(ii) Show that every real eigenvalue of T has absolute value 1.

(iii) Suppose that n = 3. Show that T has at least one real eigenvalue.

Lemma 1.2.7. Let T be an orthogonal operator on Rn with (real) eigenvalue
λ and corresponding eigenvector x. Define x⊥ := {y ∈ Rn : 〈x, y〉 = 0}.

(i) The set x⊥ is a subspace of Rn and Tx⊥ ⊆ x⊥.

(ii) The restriction Tx⊥ of T to x⊥ is an orthogonal operator which satisfies
det(T ) = λdet(Tx⊥).

Proof. (i) Let y, z ∈ x⊥ and µ ∈ R, so

〈x, µy + z〉 = µ 〈x, y〉+ 〈x, z〉 = 0.

For the second part take y ∈ x⊥ and calculate

λ 〈x, Ty〉 = 〈λx, Ty〉 = 〈Tx, Ty〉 = 〈x, y〉 = 0,

so as λ 6= 0 we have 〈x, Ty〉 = 0, which means Ty ∈ x⊥.

1It is common to denote the unit sphere in Rn by Sn−1, but we prefer to use the
convention with SO(n,R) acting on Sn.
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(ii) Let e1 be a normalised vector parallel to x, and extend to a basis B
of Rn containing e1. Then the first row of TB is (λ, 0, 0, . . . , 0) and the first
column has the same pattern. It follows that the rows of TB corresponding
to Tx⊥ (the block obtained by removing the first row and column) are still
orthogonal.

The statement about determinants is a general fact.

In the following exercise you deduce that if T ∈ SO(3,R) has an eigenvalue
−1 then T is a rotation.

Exercise 1.2.8. (i) Let S be an orthogonal operator on R2 with det(S) =
−1. Show that both 1 and −1 are eigenvalues of S.

(ii) Let T be an orthogonal operator on R3 with det(T ) = 1 and an eigenvalue
−1. Show that the eigenvalues of T are −1 (multiplicity two) and 1
(multiplicity one).

(iii) Deduce that if T is an orthogonal operator with det(T ) = 1 and an
eigenvalue −1 then T is rotation by π about some line through the origin.

It remains to investigate the case when T does not have −1 as an eigen-
value.

Exercise 1.2.9. (i) Let S be an orthogonal operator on R2 with det(S) = 1.
Show that for any orthonormal basis B of R2 there are a, b ∈ R with

a2 + b2 = 1, so that SB =

(
a −b
b a

)
.

(ii) Deduce that if T is an orthogonal operator on R3 with det(T ) = 1 and
no eigenvalue −1 then there is an orthonormal basis B of R3 for which

TB =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

Conclude T is a rotation by θ about some axis through the origin.

Now we have the result we were aiming for.

Proposition 1.2.10. Let T be a linear operator on R3. The following are
equivalent:

(i) T ∈ SO(3,R);
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(ii) T acts by rotation about some line through the origin.

Proof. (i) =⇒ (ii) By definition T is an orthogonal matrix on R3 and det(T ) =
1. If −1 is an eigenvalue of T then part (iii) of Exercise 1.2.8 shows T is a
rotation about a line through the origin. If −1 is not an eigenvalue of T
then part (ii) of Exercise 1.2.9 shows T is a rotation about a line through the
origin.

Exercise 1.2.11. Prove the implication (ii) =⇒ (i) of Proposition 1.2.10.



Chapter 2

First paradoxes

In this chapter we meet our first “paradoxes”, all of which are based on du-
plicating some objects.

Exercise 2.0.1. Look up a definition of the English word paradox. Do the
examples below qualify as paradoxes? What about the Banach–Tarski paradox
itself?

2.1 Cardinality

For an infinite cardinal I it is known that 2I = I. This clearly contradicts our
intuition from familiar arithmetic, but does it qualify as a paradox?

Exercise 2.1.1. Consider the unit ball in R3. Divide the ball in n pieces,
where n ≥ 2, in such a way that each piece has infinitely many points. Using
the above fact about cardinal arithmetic to identify each point of a piece with
two points to obtain a second copy of each piece. Reassemble the original pieces
to form the original ball and the duplicates of each piece to form a duplicate
of the original ball. The Banach–Tarski paradox is proved!

What is wrong with this reasoning?

2.2 Spokes on a wheel paradox

This “paradox” is explained by Weston [11]. The idea will appear again later
when we are proving the Banach–Tarski paradox.

Let l denote the line (0, 1) along the x-axis in R2, and let ρ denote anti-
clockwise rotation about the origin in R2 by 1/10 radians; each ρn(l) (n ≥ 1)
is then a radius of the unit circle at an angle of n/10 radians from the x-axis.

7
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The union W := t∞n=1ρ
n(l) looks like the collection of spokes on a bicycle

wheel, except there are infinitely many of them (the square union symbol sig-
nifies that we are taking the union of a disjoint family of sets). However, we
can make another spoke as follows: let ρ−1 denote a clockwise rotation by
1/10 radians, so that

ρ−1(W ) =
∞⊔
n=0

ρn(l) = W
⊔
l.

So applying one rotation in the opposite direction added one more spoke to
W .

Exercise 2.2.1. Why did we choose ρ to be rotation by 1/10 radians above?

2.3 Paradoxical decomposition of the free group

Consider the free group on two generators F2, and write the generators as
a and b. Though it is deceptively simple, what we do now foreshadows the
Banach–Tarski paradox, and is in fact one of the main parts of the proof. We
will divide F2 into five disjoint sets, and then use the action of F2 on itself to
rearrange these disjoint sets in to two copies of F2.

Recall that elements of F2 are represented by reduced words on the gen-
erating set {a, b, a−1, b−1}. For each c ∈ {a, b, a−1, b−1} we define

Wc := {w ∈ F2 : w is a reduced word beginning on the left with c}.

Since every element of F2 except the identity word e belongs to exactly one of
the sets Wc we may write

F2 = Wa

⊔
Wb

⊔
Wa−1

⊔
Wb−1

⊔
{e}. (2.1)

Now we claim that

a−1Wa = Wa

⊔
Wb

⊔
Wb−1

⊔
{e}.

Indeed, let w be a reduced word which does not belong to Wa−1 , so that aw
is a reduced word in Wa and w = a−1(aw) ∈ a−1Wa. For the other inclusion
let w be a reduced word in a−1Wa. If w = e then we are done, otherwise
w = a−1wa for some reduced word wa = as1 · · · sn, where s1 6= a−1 since wa
is a reduced word in Wa. It follows that w = s1 · · · sn is a reduced word in
Wa tWb tWb−1 t {e}. Thus, by acting on Wa we have written F2 as a union
using only two of the pieces in the union (2.1): F2 = a−1Wa tWa−1 . Arguing
similarly with b in place of a we obtain second copy of F2 as a union using
two other pieces in the union (2.1): F2 = b−1Wb tWb−1 .
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Exercise 2.3.1. The Cayley graph of a group G with generating set S ∪ S−1
is the graph which has a vertex for each element of G, and an edge joining the
vertices g and h if and only if h = gs for some s ∈ S ∪ S−1.

(i) Draw the Cayley graph of Z (which is cyclic). What part of the graph
corresponds to the set W from the spokes on a wheel paradox? What part
corresponds to ρ−1(W )?

(ii) Draw (or look up) the Cayley graph of F2 with S = {a, b}. Mark the
parts of the graph corresponding to Wa,Wb,Wa−1 and Wb−1. Use this to
visualise how we obtained two copies of F2 above.

2.4 Paradoxical decompositions in general

What we have shown above is that free groups have a paradoxical decomposi-
tion, in the following sense.

Definition 2.4.1. Let G be a group acting on a set X. Say that X is G-
paradoxical if there are disjoint subsets A1, . . . , An and B1, . . . , Bm of X, el-
ements g1, . . . , gn and h1, . . . , hm of G such that

n⋃
i=1

giAi = X =

m⋃
j=1

hjBj .

Such a collection is called a paradoxical decomposition of X. If X = G and
the action is by left multiplication then we say G is paradoxical.

Theorem 2.4.2. Suppose that G acts on a set X by · : G × X → X. A
fixed point of this action is x ∈ X such that there is g ∈ G with g · x = x;
we say the action has no non-trivial fixed points if g · x = x implies g = e.
If G is paradoxical and the action has no non-trivial fixed points then X is
G-paradoxical.

Proof. Choose M ⊆ X such that M contains exactly one element from each
G-orbit. We show that {g ·M : g ∈ G} is a partition of X. It is clear that
∪g∈Gg ·M = X: fix x ∈ X; since M contains a point from each G-orbit there
is g ∈ G with g · x ∈M , so x ∈ g−1 ·M . Now suppose g, h ∈ G and x, y ∈M
with g · x = h · y, so (h−1g) · x = y. Thus x and y belong to the same orbit,
so by definition of M we must have x = y. Hence (h−1g) · x = x, so x is a
fixed point; we assumed that the only fixed points of the action are trivial we
must have h−1g = e. We have shown that if g ·M and h ·M have non-empty
intersection then g = h.
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Take disjoint subsets A1, . . . , An and B1, . . . , Bn of X, elements g1, . . . , gn
and h1, . . . , hm of G such that

n⋃
i=1

giAi = G =
m⋃
j=1

hjBj .

coming from paradoxicality of G, and define subsets of X by

AXi :=
⋃
g∈Ai

g ·M and BX
j :=

⋃
h∈Bj

h ·M.

The sets AXi , B
X
j are pairwise disjoint (because of the claim above) and, using

the properties of a paradoxical decomposition of G,

n⋃
i=1

gi ·AXi =
n⋃
i=1

gi ·

 ⋃
g∈Ai

g ·M

 =

(
n⋃
i=1

giAi

)
·M = G ·M = X.

Similarly

m⋃
j=1

hj ·BX
j =

m⋃
i=1

hj ·

 ⋃
g∈Bj

g ·M

 =

 m⋃
j=1

hjBj

 ·M = G ·M = X.

Exercise 2.4.3. Let G be a group acting on a set X with no non-trivial fixed
points.

(i) Suppose that the action of G on X is paradoxical. Show that G is para-
doxical.

(ii) Suppose that H is a subgroup of G and E ⊂ X is H-paradoxical. Show
that E is G-paradoxical.

Hint. For (i) look at one of the G-orbits, and transfer the paradoxical decom-
position of that orbit to G.



Chapter 3

The Banach–Tarski paradox

3.1 A free subgroup of SO(3,R)

We already know that F2 has a paradoxical decomposition, so our idea is
to look for an identification of F2 with rotations of the sphere. We follow
Runde [5, Theorem 0.1.4].

Theorem 3.1.1. There is a subgroup of SO(3,R) which is isomorphic to F2.

Proof. Let θ be an anticlockwise rotation by cos−1(13) around the x-axis and
φ an anticlockwise rotation by cos−1(13) around the z-axis; with respect to the
standard orthonormal basis B of R3 these rotations (and their inverses) are
given by

θ±B =

1 0 0

0 1
3 ∓2

√
2

3

0 ±2
√
2

3
1
3

 and φ±B =

 1
3 ∓2

√
2

3 0

±2
√
2

3
1
3 0

0 0 1

 .

Clearly θ and φ belong to SO(3,R), so every (reduced) word on θ and φ also
belongs to SO(3,R). Our task is to show that no reduced word on θ and φ acts
as the identity on S3, since then the map F2 → SO(3,R) given on generators
by a 7→ θ and b 7→ φ extends to an injective group homomorphism.

Let w be a word on θ and φ which is not the empty word; we will show,
by induction on the length of w, that there is a vector on which w never acts
as the identity. First assume that w ends (on the right) with φ±. We claim
that

wB

1
0
0

 =
1

3k

 a

b
√

2
c

 , (3.1)

11
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where k is the length of w, the numbers a, b, c ∈ Z, and 3 - b. Observe that this
is sufficient to prove the result for such w. Suppose that k = 1, so w = φ±;
then

wB

1
0
0

 =
1

3

 1

±2
√

2
0

 ,

as claimed. Now suppose that the claim holds for a word w′ of length k, so
w = θ±w′ or w = φ±w′ and w′ satisfies (3.1) for integers a′, b′, c′. Calculations
show that

wB

1
0
0

 =
1

3k+1

 a

b
√

2
c

 ,

where a, b, c are given by

a = a′ ∓ 4b′, b = b′ ± 2a′, c = 3c′ if w = φ±w′;

a = 3a′, b = b′ ∓ 2c′, c = c′ ± 4b′ if w = θ±w′.

It remains to check that 3 - b. This follows from 3 - b′, but some tedious
case-checking is required: in each case apply 3 - b′ to what is obtained.

• if w = φ±θ±v then b = b′ ∓ 2a′ with 3 | a′;

• if w = θ±φ±v then b = b′ ∓ 2c′ with 3 | c′;

• if w = φ±φ±v then b = 2b′ − 9b′′, where b′′ is the integer from the form
(3.1) of v;

• if w = θ±θ±v then b = 2b′ − 9b′′, where b′′ is the integer from the form
(3.1) of v.

This completes the proof of the claim.

To finish we must also take care of the case when w ends (on the right)
with θ±; but what we have shown above implies that such w never acts as the

identity on φB

1
0
0

.

Exercises 3.1.2. (i) In the above result we chose rotations about perpen-
dicular axes. Do you think that any pair of axes will work? Guess what
property is required in order that rotations about these axes generate a
free group.
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(ii) Draw a picture which explains why the rotation θ−1φθ acts differently on
S3 to the rotation φ.

(iii) Explain why we chose the angle of rotation to be cos−1(13).

3.2 The Hausdorff paradox

We proved in Exercise 1.2.4 that SO(3,R) acts on the sphere S3, so the idea
is to apply Theorem 2.4.2 to get a paradoxical decomposition of S3. Unfortu-
nately Theorem 2.4.2 requires that the action has no fixed points.

Exercise 3.2.1. (i) What are the fixed points of the action of SO(3,R) on
S3?

(ii) Explain how these fixed points cause a problem when we try to transfer
the paradoxical decomposition of the subgroup of SO(3,R) to S3.

Hint. For (ii) you may want to look at Section 4 of [11].

The following result was effectively discovered by Hausdorff [3], and is
known as the Hausdorff paradox.

Theorem 3.2.2. There is a countable set D ⊂ S3 such that S3\D is SO(3,R)-
paradoxical.

Proof. Let F be the subgroup of SO(3,R) which is isomorphic to F2, as found
in Theorem 3.1.1, and let D denote the set of fixed points of the action of F
on S3 (so by Exercise 3.2.1 D contains two points for each axis of rotation
corresponding to an element of F ). Since F2 is countable (by Exercise 1.1.7)
it follows that D is countable. If we can prove that F acts on S3 \D with no
non-trivial fixed points then we can apply Theorem 2.4.2 and Exercise 2.4.3.

First we must check that F does indeed act on SO(3,R) \D (i.e. that no
point in this set is sent to D by the action). Suppose that p ∈ S3 and ρ ∈ F
are such that ρ(p) ∈ D, so by definition of D there is a ψ ∈ F , which is not the
neutral element, such that ψ(ρ(p)) = ρ(p). Hence (ρ−1ψρ)(p) = p, and since
it ρ−1ψρ ∈ F cannot be the neutral element we have p ∈ D. We have shown
that if p ∈ S3 \D then ρ(p) ∈ S3 \D for all ρ ∈ F , so we have a well-defined
action of F on S3 \D. The action of F on SO(3,R) \D cannot have any fixed
points, since all such fixed points lie in D.

We have shown that F is a subgroup of SO(3,R) which acts on S3 \ D
with no non-trivial fixed points. By Theorem 2.4.2 it follows that S3 \ D is
F -paradoxical, so by Exercise 2.4.3 S3 \D is SO(3,R)-paradoxical.
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Exercise 3.2.3. We finished the proof of Theorem 3.2.2 by applying The-
orem 2.4.2. Look at the proof of Theorem 2.4.2 and write down the sets
Ai, Bj ⊂ S3 \ D and the elements gi, hj ∈ SO(3,R) which satisfy Defini-
tion 2.4.1 in this case.

3.3 The Banach–Tarski paradox

The Banach–Tarski paradox almost follows immediately from the Hausdorff
paradox, but there are some technicalities to take care of.

First of all we need to find a paradoxical decomposition of the whole of
S3, not just of S3 \ D. The idea of this proof is the same as the one in the
spokes on a wheel “paradox”, just adapted to three dimensions.

Proposition 3.3.1. The sphere S3 is SO(3,R)-paradoxical.

Proof. Choose a line ` through the origin in R3 which does not intersect the
set D from Theorem 3.2.2. Since there are uncountably many lines through
the origin and the set D is countable such a line ` certainly exists. We want
to find an angle α0 so that if σ is (anticlockwise) rotation about ` through an
angle α0 (note that σ ∈ SO(3,R)) then the sets σn(D) (n ∈ N) are pairwise
disjoint, like the sets ρn(l) from the spokes on a wheel “paradox”.

Let σα ∈ SO(3,R) be anticlockwise rotation by angle α about the line `,
and consider

{α ∈ [0, 2π) : there is p ∈ D and n ∈ N with σnα(p) = σnα(p) ∈ D}.

For each pair (p, q) ∈ D there is at most one angle α ∈ [0, 2π) with σα(p) = q,
so since N is countable each pair (p, q) ∈ D × D contributes only countably
many elements to the set above. Since D × D is countable the above set is
countable, so we may choose an angle α0 which is not in the set. Let σ := σα0

denote the corresponding rotation, and observe that σ has the property we
wanted: since σn(D)∩D is empty it follows that σm(D)∩σn(D) is empty for
all m,n ∈ N with m 6= n.

To finish the proof we apply the same idea from the spokes on a wheel
paradox. Let

E :=
∞⊔
n=1

σn(D),

and note that

(S3 \ σ−1E) t E =
(
S3 \ (E ∪D)

)
∪ E =

(
(S3 \ E) ∩ (S3 \D)

)
∪ E

=
(
(S3 \ E) ∪ E

)
∩
(
(S3 \D) ∪ E

)
= S3 ∩ (S3 \D) = S3 \D,

(3.2)
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while moving one of these pieces by σ−1 gives S3 = (S3\σ−1E)tσ−1E. Recall
that

S3 \D = Wθ ·M
⊔
Wθ−1 ·M

⊔
Wφ ·M

⊔
Wφ−1 ·M.

Define pairwise disjoint subsets of S3 by

A1 = (Wθ ·M) ∩ (S3 \ E) ∩ θ(S3 \ E),

A2 = (Wθ ·M) ∩ E ∩ θ(S3 \ E),

A3 = (Wθ−1 ·M) ∩ (S3 \ E),

A4 = (Wθ ·M) ∩ (S3 \ E) ∩ θ(E),

A5 = (Wθ ·M) ∩ E ∩ θ(E),

A6 = (Wθ−1 ·M) ∩ E,

B1 = (Wφ ·M) ∩ (S3 \ E) ∩ φ(S3 \ E),

B2 = (Wφ ·M) ∩ E ∩ φ(S3 \ E),

B3 = (Wφ−1 ·M) ∩ (S3 \ E),

B4 = (Wφ ·M) ∩ (S3 \ E) ∩ φ(E),

B5 = (Wφ ·M) ∩ E ∩ φ(E),

B6 = (Wφ−1 ·M) ∩ E.

Also define elements of SO(3,R):

g1 = θ−1, g2 = θ−1, g3 = e, g4 = σ−1θ−1, g5 = σ−1θ−1, g6 = σ−1

h1 = φ−1, h2 = φ−1, h3 = e, h4 = σ−1φ−1, h5 = σ−1φ−1, h6 = σ−1.

In the following calculation we use that intersection distributes over union a
number of times, i.e.

(Xi ∩ Yi) ∪ (Xi ∩ Zi) = Xi ∩ (Yi ∪ Zi). (3.3)

The sets involved on the left side are labelled in the calculation below using
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underbraces, and the resulting sets on the right side with overbraces. Now

(θ−1 ·A1)
⊔

(θ−1 ·A2)
⊔
A3

⊔
(σ−1θ−1 ·A4)

⊔
(σ−1θ−1 ·A5)

⊔
(σ−1 ·A6)

=
(
θ−1(A1 tA2) tA3

)⊔(
σ−1

(
θ−1(A4 tA5) tA6

))
=

θ−1( A1︷ ︸︸ ︷(
(Wθ ·M)︸ ︷︷ ︸

X1

∩ (S3 \ E) ∩ θ(S3 \ E)︸ ︷︷ ︸
Y1

)
t

A2︷ ︸︸ ︷(
(Wθ ·M)︸ ︷︷ ︸

X1

∩E ∩ θ(S3 \ E)︸ ︷︷ ︸
Z1

) )

t

A3︷ ︸︸ ︷(
(Wθ−1 ·M) ∩ (S3 \ E)

)
⊔σ−1

θ−1( A4︷ ︸︸ ︷(
(Wθ ·M)︸ ︷︷ ︸

X2

∩ (S3 \ E) ∩ θ(E)︸ ︷︷ ︸
Y2

)
t

A5︷ ︸︸ ︷(
(Wθ ·M)︸ ︷︷ ︸

X2

∩E ∩ θ(E)︸ ︷︷ ︸
Z2

) )

t

A6︷ ︸︸ ︷(
(Wθ−1 ·M) ∩ E

)


=

θ−1( X1︷ ︸︸ ︷
(Wθ ·M)∩

( Y1︷ ︸︸ ︷(
(S3 \ E)︸ ︷︷ ︸

Y3

∩ θ(S3 \ E)︸ ︷︷ ︸
X3

)
∪

Z1︷ ︸︸ ︷(
E︸︷︷︸
Z3

∩ θ(S3 \ E)︸ ︷︷ ︸
X3

) ))

∪
(
(Wθ−1 ·M) ∩ (S3 \ E)

)
⊔σ−1

θ−1( X2︷ ︸︸ ︷
(Wθ ·M)∩

( Y2︷ ︸︸ ︷(
(S3 \ E)︸ ︷︷ ︸

Y4

∩ θ(E)︸ ︷︷ ︸
X4

)
∪

Z2︷ ︸︸ ︷(
E︸︷︷︸
Z4

∩ θ(E)︸ ︷︷ ︸
X4

) ))

∪
(
(Wθ−1 ·M) ∩ E

)
=

θ−1((Wθ ·M) ∩
( X3︷ ︸︸ ︷
θ(S3 \ E)∩

( Y3︷ ︸︸ ︷
(S3 \ E)∪

Z3︷︸︸︷
E
)))

∪
(
(Wθ−1 ·M) ∩ (S3 \ E)

)
⊔σ−1

θ−1((Wθ ·M) ∩
( X4︷ ︸︸ ︷
θ(E)∩

( Y4︷ ︸︸ ︷
(S3 \ E)∪

Z4︷︸︸︷
E
)))

∪
(
(Wθ−1 ·M) ∩ E

)
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=
(
θ−1
(
(Wθ ·M) ∩ θ(S3 \ E)

)
∪
(
(Wθ−1 ·M) ∩ (S3 \ E)

))⊔(
σ−1

(
θ−1
(

(Wθ ·M) ∩ θ(E)
)
∪
(
(Wθ−1 ·M) ∩ E

)))
=

( θ−1(Wθ ·M)︸ ︷︷ ︸
Y5

∩ (S3 \ E)︸ ︷︷ ︸
X5

)
∪
(

(Wθ−1 ·M)︸ ︷︷ ︸
Z5

∩ (S3 \ E)︸ ︷︷ ︸
X5

)
⊔σ−1

( θ−1(Wθ ·M)︸ ︷︷ ︸
Y6

∩ E︸︷︷︸
X6

)
∪
(

(Wθ−1 ·M)︸ ︷︷ ︸
Z6

∩ E︸︷︷︸
X6

)


=

( Y5︷ ︸︸ ︷
θ−1(Wθ ·M)∪

Z5︷ ︸︸ ︷
(Wθ−1 ·M)

)
∩

X5︷ ︸︸ ︷
(S3 \ E)


⊔
σ−1

( Y6︷ ︸︸ ︷
θ−1(Wθ ·M)∪

Z6︷ ︸︸ ︷
(Wθ−1 ·M)

)
∩

X6︷︸︸︷
E


=
(
(S3 \D) ∩ (S3 \ E)

)⋃
σ−1

(
(S3 \D) ∩ E

)
= (S3 \ E)

⋃
σ−1(E \D) = (S3 \ E)

⋃
σ−1(σE) = S3.

Repeating the above calculation shows t6j=1hj ·Bj = S3. This completes the
proof.

Now we are ready to finish the proof of the Banach–Tarski paradox.

Exercise 3.3.2. Can you guess how we will get a paradoxical decomposition
of the solid ball from the paradoxical decomposition of S3 we found in Propo-
sition 3.3.1? Explain the idea, along with any difficulties which you think may
arise.

We denote the solid unit ball in R3 centred at the origin by B3 := {x ∈
R3 : ‖x‖ ≤ 1}. Write En for the n-dimensional Euclidean motion group, which
consists of all translations and rotations.

Theorem 3.3.3. The unit ball B3 in R3 is E3-paradoxical. That is, we can
split the ball B3 in finitely many pieces, then rearrange these pieces using
rotations and translations in E3 to get two copies of B3.

Proof. Let A1, . . . , An and B1, . . . , Bm be pairwise disjoint subsets of S3 and
g1, . . . , gn, h1, . . . , hm ∈ SO(3,R) giving the paradoxical decomposition of S3
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found in Proposition 3.3.1. As in Exercise 3.3.2 define disjoint subsets Ari and
Br
j of B3 by filling in radially:

Ari := {ta : t ∈ (0, 1], a ∈ Ai} and Br
j := {tb : t ∈ (0, 1], b ∈ Bj};

these sets, together with g1, . . . , g6, h1, . . . , h6 ∈ SO(3,R) in Proposition 3.3.1,
give a paradoxical decomposition of B3 \ {0}.

It remains to fix the missing origin. Fortunately we can reuse the same
idea from the spokes on a wheel paradox, in the same way as we did to fix
the set D in Proposition 3.3.1: we will define a set C and a rotation τ such
that B3 = (B3 \ τ−1C) t τ−1C, and B3 \ {0} = (B3 \ τ−1C) t C. There are
many choices for how to define C and τ — we just need to make sure that
C ⊂ B3 and that rotation by τ has similar properties to the spokes on a wheel
paradox. Let x = (1/10, 0, 0) and choose a line through x which does not
pass through the origin; this line will be the axis of rotation. Let τ denote
clockwise rotation about this line through 1 radian. Note that τ is not an
element of SO(3,R), but τ ∈ E3, and τn(0) 6= 0 for all n ∈ N. For the same
reason as we used in Section 2.2 and in Proposition 3.3.1, C := t∞n=1τ

n(0)
satisfies τ−1C = t∞n=0τ

n(0) = C t {0}. A calculation similar to (3.2) shows
that

(B3 \ τ−1C) t C = B3 \ {0}.

Combining this with the paradoxical decomposition of B3 \ {0} gives a para-
doxical decomposition of B3.

Define pairwise disjoint subsets of B3 by

Ei,j,k := Xi ∩ (g−1k ·Xj) ∩Ark, Fi,j,k := Xi ∩ (h−1k ·Xj) ∩Br
k,

where X1 = B3 \ τ−1C and X2 = C, and group elements

si,j,k := rjgk, ti,j,k := rjhk.

Here gk, hk are the group elements appearing in the proof of Proposition 3.3.1,
while r1 = e and r2 = τ−1. So

E1,1,1 = (B3 \ τ−1C) ∩
(
θ · (B3 \ τ−1C)

)
∩Ar1,

E1,1,2 = (B3 \ τ−1C) ∩
(
θ · (B3 \ τ−1C)

)
∩Ar2,

E1,1,3 = (B3 \ τ−1C) ∩ (B3 \ τ−1C) ∩Ar3,
E1,1,4 = (B3 \ τ−1C) ∩

(
θσ · (B3 \ τ−1C)

)
∩Ar4,

E1,1,5 = (B3 \ τ−1C) ∩
(
θσ · (B3 \ τ−1C)

)
∩Ar5,

E1,1,6 = (B3 \ τ−1C) ∩
(
σ · (B3 \ τ−1C)

)
∩Ar6,

E1,2,1 = (B3 \ τ−1C) ∩ (θ · C) ∩Ar1,
E1,2,2 = (B3 \ τ−1C) ∩ (θ · C) ∩Ar2,
E1,2,3 = (B3 \ τ−1C) ∩ C ∩Ar3,
E1,2,4 = (B3 \ τ−1C) ∩ (θσ · C) ∩Ar4,
E1,2,5 = (B3 \ τ−1C) ∩ (θσ · C) ∩Ar5,
E1,2,6 = (B3 \ τ−1C) ∩ (σ · C) ∩Ar6,
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E2,1,1 = C ∩
(
θ · (B3 \ τ−1C)

)
∩Ar1,

E2,1,2 = C ∩
(
θ · (B3 \ τ−1C)

)
∩Ar2,

E2,1,3 = C ∩ (B3 \ τ−1C) ∩Ar3,
E2,1,4 = C ∩

(
θσ · (B3 \ τ−1C)

)
∩Ar4,

E2,1,5 = C ∩
(
θσ · (B3 \ τ−1C)

)
∩Ar5,

E2,1,6 = C ∩
(
σ · (B3 \ τ−1C)

)
∩Ar6,

E1,2,1 = C ∩
(
θ · (B3 \ τ−1C)

)
∩Ar1,

E1,2,2 = C ∩
(
θ · (B3 \ τ−1C)

)
∩Ar2,

E1,2,3 = C ∩ (B3 \ τ−1C) ∩Ar3,
E1,2,4 = C ∩

(
θσ · (B3 \ τ−1C)

)
∩Ar4,

E1,2,5 = C ∩
(
θσ · (B3 \ τ−1C)

)
∩Ar5,

E1,2,6 = C ∩
(
σ · (B3 \ τ−1C)

)
∩Ar6.

while

si,1,1 = θ−1, si,1,2 = θ−1, si,1,3 = e, si,1,4 = σ−1θ−1, si,1,5 = σ−1θ−1, si,1,6 = σ−1,

si,2,1 = τ−1θ−1, si,2,2 = τ−1θ−1, si,2,3 = τ−1,

si,2,4 = τ−1σ−1θ−1, si,2,5 = τ−1σ−1θ−1, si,2,6 = τ−1σ−1.

Some of these sets may be empty, but that doesn’t matter. A calculation
similar to the proof of Proposition 3.3.1 shows that ∪i,j,ksi,j,k · Ei,j,k = B3 =
ti,j,k · Fi,j,k. We will not write this calculation as it is extremely long. See
Exercise 3.3.7(ii).

Exercise 3.3.4. (i) Explain the choices we made for the point x, the axis
through x and the angle of rotation.

(ii) Why does the Banach–Tarski paradox not say that the unit ball in R3 is
SO(3,R)-paradoxical?

Obviously the Banach–Tarski paradox as stated above does not require us
to work with the unit ball in R3: the same idea by filling in the solid ball
radially allows us to duplicate a solid ball of any radius.

You may have noticed that it quickly became difficult to keep track of the
paradoxical decompositions of sets involved, so it is convenient to introduce
some terminology (perhaps it would have been more convenient to do so before
proving the Hausdorff paradox). This terminology also makes it easier to give
a more general form of the Banach–Tarski paradox, in which we no longer
work with solid balls.

Definition 3.3.5. Let G be a group acting on a set X. We say that two
subsets A and B of X are G-equidecomposable, and write A ∼G B, if there
are disjoint subsets A1, . . . , An and B1, . . . , Bn of X (we do not need any
assumption on intersections Ai∩Bj) and g1, . . . , gn ∈ G such that A = tni=1Ai
and B = tnj=1Bj and Bi = gi · Ai for 1 ≤ i ≤ n. We also write A�G B if A
is G-equidecomposable with a subset of B.
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Lemma 3.3.6. Let G be a group acting on a set X.

(i) If A,B ⊂ X with A ∼G B then there is a bijection β : A → B with
C ∼G β(C) for all C ⊂ A.

(ii) If A1, A2, B1, B2 ⊂ X with A1 ∩ A2 = ∅ = B1 ∩ B2 such that A1 ∼G B1

and A2 ∼G B2 then A1 ∪A2 ∼G B1 ∪B2.

Proof. (i) Let A1, . . . , An, B1, . . . , Bn ⊂ X and g1, . . . , gn ∈ G witness A∼GB.
Given C ⊂ A define

β : C → B; β(c) := gi · c, c ∈ Ai.

This is well-defined because the sets A1, . . . , An are pairwise disjoint, with
union A, so each a ∈ A belongs to exactly one of the sets Ai. For each i ∈ I
the map Ai → Bi; a 7→ gi ·a is a bijection, so because the sets A1, . . . , An and
B1, . . . , Bn are pairwise disjoint we see that β is a bijection. Indeed, if b ∈ B
then b ∈ Bi for some i, hence g−1i b ∈ Ai so b = β(g−1i b), so β is surjective.
For injectivity suppose β(x) = β(y), hence β(x) and β(y) belong to the same
set Bi; this means β(x) = gi · x and β(y) = gi · y, so x = y. Now take C ⊂ A
and define Ci := C ∩Ai and Dj := β(C)∩Bj . These sets are pairwise disjoint
because the sets Ai and Bj are. Also

n⋃
i=1

Ci =

n⋃
i=1

C ∩Ai = C ∩A = C,

similarly ∪nj=1Dj = β(C). Finally,

gi · Ci = gi · (C ∩Ai) = (gi · C) ∩ (gi ·Ai) = (gi · C) ∩Bi = β(C) ∩Bi = Di.

(The penultimate equality above is not because gi · C = β(C), which is false,
but the sets gi · C and β(C) do have the same intersection with Bi.) Hence
C ∼G β(C).

(ii) Let C1, . . . , Cn and D1, . . . , Dn be pairwise disjoint subsets of A1 and
B1 respectively, and g1, . . . , gn ∈ G such that gi ·Ci = Di; also let E1, . . . , Em
and F1, . . . , Fm be pairwise disjoint subsets of A2 and B2 respectively, and
h1, . . . , hm ∈ G such that hj · Ej = Fj . Since A1 and A2 are disjoint the sets
Ci and Ej are together pairwise disjoint (intersections Ci ∩ Ej are empty),
similarly for Di and Fj , so it is clear that these sets together with gi, hj
implement A1 ∪A2 ∼G B1 ∪B2.

Exercises 3.3.7. Suppose that G is a group acting on the set X.
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(i) Show that G-equidecomposability is an equivalence relation on the collec-
tion of subsets of X.

(ii) Show that if A ⊂ X is G-paradoxical and A∼GB then B is G-paradoxical.

(iii) Show that the relation �G is a reflexive and transitive relation on the
equivalence classes of ∼G.

(iv) (a) Reformulate the definition of a G-paradoxical set in terms of equide-
composability.

(b) Reformulate Proposition 3.3.1 using SO(3,R)-equidecomposability.

(c) Summarise the proof of the Banach–Tarski paradox using equidecom-
posability.

Recall the Cantor–Schröder–Bernstein theorem for cardinals, which states
that if I ≤ J and J ≤ I then I = J . The following theorem is a version of
this result for the relations �G and ∼G.

Theorem 3.3.8. Let G be a group acting on a set X. Suppose that A and B
are subsets of X such that A�G B and B �G A. Then A∼G B.

Proof. Let B′ ⊂ B and A′ ⊂ A be such that A ∼G B′ and B ∼G A′. Let β :
A→ B′ and γ : B → A′ be bijections as in Lemma 3.3.6. Define C0 := A \A′,
and define inductively Cn+1 := γ ◦ β(Cn). Write C := ∪∞n=0Cn. We have that
γ−1(A \ C) = B \ β(C), which implies (A \ C) ∼G (B \ β(C)). Indeed, since
A \ (A \A′) = A′,

γ−1(A \ C) = γ−1(A) \
(
∪∞n=0 β(Cn) ∪ γ−1(C0)

)
=
(
γ−1(A) \

(
β(C)

))
∩
(
γ−1(A) \ γ−1(C0)

)
=
(
γ−1(A) \

(
β(C)

))
∩ γ−1(A′)

=
(
γ−1(A) ∩ γ−1(A′)

)
\ β(C)

= γ−1(A′) \ β(C) = B \ β(C).

Similarly C ∼G φ(C). Hence, by Lemma 3.3.6 again,

A = ((A \ C) ∪ C)∼G ((B \ β(C)) ∪ β(C)) = B.

Now we can give the strong form of the Banach–Tarski paradox. For a set
X ⊂ Rn, a point x is called an interior point of X if there is an open ball
centred at x, say Bε(x), with Bε(x) ⊂ X.
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Theorem 3.3.9. Any two bounded subsets of R3 with non-empty enterior are
E3-equidecomposable.

Proof. Let A and B be subsets of R3 with non-empty interior. We will show
A�E3 B; since A and B are arbitrary the same argument also shows B�E3 A,
so by Theorem 3.3.8 A∼E3B. Take solid balls of suitable radius K and L with
A ⊂ K and L ⊂ B (this is possible because we assumed A was bounded and
B has an interior point). Choose n large enough that K can be covered by n
copies of L (the copies of L are allowed to have non-empty intersection). Let
M denote a set of n disjoint copies of L then, by applying our first version of
the Banach–Tarski paradox, Theorem 3.3.3, n times, M ∼E3 L. This means

A ⊂ K �E3 M �E3 L ⊂ B,

so by Exercise 3.3.7 part (iii) A�E3 B.

The Banach–Tarski paradox is closely related to the axiom of choice:

Axiom of choice. For any collection of non-empty sets {Xi}i∈I
there is a set X containing exactly one element from each Xi.

This proved controversial: Borel objected to the Hausdorff paradox because
of its use of the axiom of choice, since the use of the axiom of choice means
the use of a set which cannot be ‘explicitly’ defined. We will see later that
the Banach–Tarski paradox necessarily involves sets which are not Lebesgue-
measurable (this statement will be made precise in Chapter 4); it is now known
that constructing a set which is not Lebesgue-measurable requires some form
of the axiom of choice, so that the Banach–Tarski paradox also does require
some form of the axiom of choice as an assumption. We refer to [10, Chapter
13] for a detailed account of the connection between the axiom of choice and
the Banach–Tarski paradox, including references for the statements in this
paragraph.

Exercises 3.3.10. (i) What is your view on the axiom of choice?

(ii) Identify the points in this project where the axiom of choice was used.

(iii) Look up the original paper of Banach and Tarski [1]. What was their
view?



Chapter 4

The problem of measure

Now we go back to measure theory and look at the original motivation for
developing the Hausdorff and Banach–Tarski paradoxes. First we give basic
definitions and introduce Lebesgue measure, then cover non-measurable sets,
which leads us to consider the problem of measure.

4.1 Basic measure theory and Lebesgue measure

Definition 4.1.1. Let X be a set. A σ-algebra on X is a collection A of
subsets of X such that

(i) X ∈ A;

(ii) A is closed under complements;

(iii) A is closed under countable unions (and therefore also countable inter-
sections).

For any set X there are two obvious σ-algebras on X: the collection P(X)
of all subsets of X and {∅, X}. We now see how to construct other examples.

Exercise 4.1.2. Let X be a set.

(i) Show that the intersection of an arbitrary non-empty family of σ-algebras
on X is a σ-algebra on X.

(ii) Let F be a family of subsets of X. Show that there is a smallest σ-algebra
AF on X that contains F , and explain why it is unique.

23
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Now we are able to introduce an important σ-algebra on Euclidean space.
Recall that a set X ⊂ Rn is called open if for every x ∈ X there is ε > 0 such
that Bε(x) ⊂ X, i.e. every point of X is an interior point of X.

Definition 4.1.3. The σ-algebra on Rn generated by all open subsets of Rn
is called the Borel σ-algebra on Rn, denoted B(Rn). Equivalently, B(Rn) is
the σ-algebra on Rn generated by all (half-open) boxes on Rn [2, Proposition
1.1.5], that is, generated by all sets in Rn of the form

{(x1, . . . , xn) ∈ Rn : ai < xi ≤ bi for i = 1, . . . , n}.

The collections of sets introduced above are the domain of the measures
we now introduce.

Definition 4.1.4. Let X be a set and A a σ-algebra on X. A measure on
(X,A) is a function

µ : A → [0,+∞]

with the following properties:

(i) µ(∅) = 0;

(ii) µ is countably additive, i.e. if {An}n∈N is a countable collection of pair-
wise disjoint subsets of X which all belong to A then µ(∪n∈NAn) =∑

n∈N µ(An).

If, in addition, G is a group acting on X then we say µ is G-invariant if

µ(g ·A) = µ(A), g ∈ G, A ∈ A.

In the above situation the elements of A are called measurable sets, and
those sets with measure 0 are called null sets. We often speak simply of a
measure on X, omitting the σ-algebra when it is clear from context.

Examples 4.1.5. (i) For any set X there is a measure on P(X) called
counting measure, and defined by

µ(A) :=

{
|A| if A is finite;

+∞ if A is infinite.

(ii) Every probability space corresponds to a set X equipped with a σ-algebra
and a measure µ satisfying µ(X) = 1. In this case the measurable sets
represent events, and the measure gives the probability of an event oc-
curring.
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(iii) Every locally compact group carries a natural measure on the σ-algebra
generated by all open sets, called Haar measure (see Appendix B).

Now we give a brief explanation of Lebesgue measure. Let us call a subset
B of Rn a box if one can write

B = {(x1, . . . , xn) : xi ∈ Ii} = I1 × · · · × In,

where each Ii ⊂ R is an interval (we do not worry about whether the Ii are
open or closed or half-open). It is natural that if I = (a, b) (or [a, b] or (a, b]
or [a, b)) with a ≤ b then the length of I should be len(I) = b− a. Similarly,
we define the volume of a box B = I1 × · · · × In in Rn to be

vol(B) :=

n∏
i=1

len(Ii).

If a set A ⊂ Rn is contained in the union of countably many boxes {Bm}m∈N
then, according to the properties of measures, we should have vol(A) ≤∑

m∈N vol(Bm). Now we can define Lebesgue outer measure on Rn, denoted
λ∗, by

λ∗(A) := inf

{∑
m∈N

vol(Bm) : Bm are boxes and A ⊂ ∪m∈NBm

}
.

The following result summarises the results on Lebesgue measure in [2,
Section 1.4] and defines Lebesgue measure.

Theorem 4.1.6. There is a measure λ on (Rn,B(Rn)), which assigns to
each box B its volume. This measure, which we call Lebesgue measure, is the
unique measure µ on (Rn,B(Rn)) for which µ(B) = vol(B) for all boxes B.
Moreover, Lebesgue measure is translation-invariant, and agrees with Lebesgue
outer measure where the latter is defined.

We make two comments here on the properties of Lebesgue measure which
we will not need later. First, it is possible to define a σ-algebra on Rn which
contains B(Rn) on which Lebesgue measure is also defined; this σ-algebra and
the resulting Lebesgue measure are called the completions of B(Rn) and λ,
respectively. The latter is also called Lebesgue measure; it fixes the problem
that there may be subsets of elements of B(Rn) which are not in B(Rn).
Secondly, we stated that Lebesgue measure on B(Rn) is unique; in fact, if µ is
any non-zero measure on B(Rn) that is finite on bounded sets and translation-
invariant then µ is called a Haar measure on Rn, and there is c > 0 for which
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µ = cλ. In other words, Lebesgue measure is a Haar measure on (Rn,B(Rn))
(see Appendix B) and the requirement that it gives the unit cube a volume 1
determines the constant c.

Exercise 4.1.7. Theorem 4.1.6 states that Lebesgue measure is translation-
invariant.

(i) Explain the statement: Lebesgue measure is invariant under the natural
action of the group Rn on Rn, defined in Exercise 1.2.2.

(ii) Show that Lebesgue measure is invariant under the action of the Eu-
clidean motion group En.

4.2 Vitali sets and the problem of measure

Is it possible that all subsets of Rn are Lebesgue measurable? This natural
question was an open problem until it was solved by Vitali [8]. Make sure not
to confuse “not Lebesgue measurable” with “has measure zero”.

Theorem 4.2.1. There is a subset of R which is not Lebesgue measurable.

Proof. Define a relation ∼ on R by

x ∼ y ⇐⇒ x− y ∈ Q.

First we check that this is an equivalence relation. Reflexivity is clear since
0 ∈ Q. If x − y ∈ Q then y − x = −(x − y) ∈ Q, so ∼ is symmetric. For
transitivity suppose x ∼ y and y ∼ z, so (x − y), (y, z) ∈ Q; thus x − z =
(x− y) + (y− z) ∈ Q as Q is closed under addition. Each equivalence class of
∼ is of the form Q + x for some x ∈ R, so each equivalence class is dense in
R. It also follows that each equivalence class intersects the interval (0, 1), so
since they are disjoint we may use the axiom of choice to form a set V ⊂ (0, 1)
containing exactly one element of each equivalence class. Now we prove this
set V is not Lebesgue measurable.

Since Q is countable we can enumerate the set Q∩(−1, 1), say by {rn}n∈N,
and define Vn := V + rn. First we show that the sets {Vn}n∈N are pairwise
disjoint. If Vm∩Vn is not empty then there are v, w ∈ V with v+rm = w+rn,
so v ∼ w and therefore m = n, since distinct equivalence classes are always
disjoint. Secondly, observe that⋃

n∈N
Vn ⊂ (−1, 2), (4.1)
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since V ⊂ (0, 1) and −1 < rn < 1 for each n ∈ N. Finally we show (0, 1) ⊂
∪n∈NVn. Let x ∈ (0, 1) and take v ∈ V so that x ∼ v; thus x − v ∈ Q and
−1 < x− v < 1, so x− v = rn for some n ∈ N. Hence x ∈ Vn.

Now suppose that V is Lebesgue measurable. Since Lebesgue measure is
translation-invariant λ(Vn) = λ(V ), and the disjointness of the sets {Vn}n∈N
implies

λ

(⋃
n∈N

Vn

)
=
∑
n∈N

λ(Vn) =
∑
n∈N

λ(V ). (4.2)

If λ(V ) = 0 then we have λ(∪n∈NVn) = 0, contradicting the above fact that
(0, 1) ⊂ ∪n∈NVn. If λ(V ) 6= 0 then equation (4.2) implies λ(V ) = +∞,
contradicting (4.1). The set V in this proof is called a Vitali set.

Exercise 4.2.2. Give a construction of a Vitali set in Rn.

At the conclusion of proof of Theorem 4.2.1 it was essential that Lebesgue
measure is countably additive: we used countable additivity to produce a
contradiction in the case λ(V ) 6= 0. After Vitali’s result appeared in 1905
mathematicians were led to ask about what would happen if we removed the
requirement of countable additivity.

Definition 4.2.3. Let X be a set. An algebra on X is a collection A of subsets
on X containing X, closed under complements and finite unions. That is, an
algebra on X is a collection of subsets of X satisfying conditions (i),(ii) and
(iii) in Definition 4.1.1, except that we require only finite unions in (iii). A
finitely additive measure on (X,A) is a function

µ : A → [0,+∞]

with the following properties:

(i) µ(∅) = 0;

(ii) µ is (finitely) additive, i.e. if {Ak}nk=1 is a collection of pairwise disjoint
subsets of X which all belong to A then µ(∪nk=1Ak) =

∑n
k=1 µ(Ak).

Theorem 4.2.1 leads us to consider the following problem of measure.

Problem of measure. Is there a finitely additive measure on
Rn which is invariant under the action of the group of isometries
of Rn, assigns the unit cube [0, 1]n the measure 1, and which is
defined on every subset of Rn?
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Sometimes the problem of measure is phrased as asking if Lebesgue mea-
sure can be extended to a finitely additive, isometry-invariant measure on all
of Rn which normalises the unit cube.

In fact, we have already solved the problem of measure in R3.

Until now it appeared that the Banach–Tarski paradox creates a contra-
diction with Lebesgue measure: the unit ball in R3 has volume 4

3π, while two
copies of the unit ball have volume 8

3π, yet we passed from one copy to two
copies using only translations and rotations. But the Lebesgue measure of a
set is supposed to be invariant under the action of the group containing all
such translations and rotations. The following exercise resolves this confusion.

Exercise 4.2.4. (i) Using the example of Vitali sets, explain why (at least)
one of the sets involved in the Banach–Tarski paradox is not measurable
for any finitely additive measure satisfying the conditions in the problem
of measure.

(ii) Explain why the Banach–Tarski paradox answers the problem of measure
for R3.

4.3 Tarski’s theorem

Exercise 4.2.4 effectively shows that paradoxical decompositions prevent the
existence of non-trivial finitely additive invariant measures defined on all sub-
sets. Tarski [7] proved the converse to this result, which shows that the only
obstruction to the existence of such measures is paradoxical decompositions.
We do not give the proof of the hard direction, since it requires too much
extra background.

Theorem 4.3.1. Let G be a group acting on a set X and let E ⊂ X. The
following are equivalent:

(i) there is a finitely additive G-invariant measure on X which gives E the
measure 1;

(ii) E is not G-paradoxical.

Proof. (i) =⇒ (ii) We show that if E is paradoxical then such measure cannot
exist. Let A1, . . . , An, B1, . . . , Bm ⊂ E and g1, . . . , gn, h1, . . . , hm ∈ G witness
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that E is G-paradoxical. Then

µ(E) ≥ µ
(

(tni=1Ai)
⊔(
tmj=1Bj

))
=

n∑
i=1

µ(Ai) +
m∑
j=1

µ(Bj)

=
n∑
i=1

µ(gi ·Ai) +
m∑
j=1

µ(hj ·Bj)

≥ µ
(

(∪ni=1gi ·Ai)
⊔(
∪mj=1hj ·Bj

))
= 2µ(E)

for any measure µ which is G-invariant. This implies that µ(E) is 0 or +∞.
(ii) =⇒ (i) Omitted. See [10, Corollary 9.2].

Remark 4.3.2. We have also shown that the problem of measure has a neg-
ative solution for Rn with n ≥ 3. Indeed, one can find a free subgroup of
SO(n,R) for all n ≥ 3 as in Theorem 3.1.1, so similar arguments to those in
Chapter 3 give a paradoxical subset of Rn. Now Theorem 4.3.1 tells us that
the problem of measure has a negative solution for Rn.





Chapter 5

Amenable groups

In this section we will use the term discrete group to indicate a group with
the discrete topology.

You will notice that one of the most important steps in our proof of
the Banch–Tarski paradox was finding a free subgroup of the rotation group
SO(3,R) in Theorem 3.1.1. Similarly, in Exercise 2.4.3 we saw that if a set
is G-paradoxical then G is itself paradoxical. Therefore we may view the
existence of paradoxical decompositions as being a statement about how com-
plicated the group involved is. This was recognised by von Neumann, who
abstracted this property in the following important definition.

Definition 5.0.1. Let G be a discrete group. Say G is amenable is there
is a finitely additive measure µ on all subsets of G which is G-invariant and
normalises G; i.e. µ(gE) = µ(E) for all E ⊂ G and µ(G) = 1.

The idea of this definition is summarised in the following exercise.

Exercise 5.0.2. Let G be a discrete group. Show that the following are equiv-
alent:

(i) G is amenable;

(ii) G is not paradoxical.

In particular, we have the following fundamental example.

Example 5.0.3. The free group Fn is not amenable when n ≥ 2.

For a space X with counting measure we define

`∞(X) :=

{
φ : X → C : sup

x∈X
|φ(x)| <∞

}
,

31
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which is an algebra with pointwise operations, that is, it is a vector space
(infinite-dimensional when X is infinite) and a ring in a compatible way. The
vector space and ring operations are called the pointwise operations:

(cφ)(x) := c(φ(x)), (φ+ ψ)(x) := φ(x) + ψ(x), (φψ)(x) := φ(x)ψ(x).

Exercise 5.0.4. Suppose that G is a group, X a set and · : G ×X → X an
action of G on X. Show that

· : G× `∞(X)→ `∞(X); (g ·φ)(x) := φ(g−1 ·x), g ∈ G, x ∈ X, φ ∈ `∞(X),

defines an action of G on `∞(X) which is linear and multiplicative, that is,
for each g ∈ G the map φ 7→ g · φ is linear and g · (φψ) = (g · φ)(g · ψ).

Amenable groups are normally defined in a different way; the following
exercise shows that our definition is the same as the more common one.

Exercise 5.0.5. Let G be a discrete group. Show that the following conditions
are equivalent:

(i) G is amenable;

(ii) there is a map I : `∞(G)→ C which is:

(a) linear,

(b) contractive (|I(φ)| ≤ supg∈G |φ(g)| for all φ ∈ `∞(G)),

(c) positive (if φ(g) ≥ 0 for all g ∈ G then I(φ) ≥ 0),

(d) G-invariant (for each r ∈ G and φ ∈ `∞(G) we have I(r ·φ) = I(φ)).

We can use Exercise 5.0.5 to define amenable groups in general. For a
locally compact group G we denote by B(G) the Borel σ-algebra on G, that
is, the smallest σ-algebra containing all open subsets of G.

Definition 5.0.6. Let G be a locally compact group. We say that G is
amenable if there is a positive linear functional I : L∞(G,B(G)) → C which
is positive, has norm 1, and satisfies I(g · φ) = I(φ) for all g ∈ G and all
φ ∈ L∞(G,B(G)). The functional I is usually called a left-invariant mean.
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5.1 Examples of amenable groups

Proposition 5.1.1. A compact group is amenable.

Proof. Let µ denote the left Haar measure on a compact group G which is
normalised so that µ(G) = 1. Since µ is left-invariant, the functional Iµ on
L∞(G,B(G)) is a left-invariant mean.

In particular, finite groups are amenable.
It is surprisingly difficult to prove groups are amenable. We state the

following classic result, due to Markov and Kakutani, to help us sketch the
proof of the following result.

Theorem 5.1.2. Let E be a (locally) convex topological vector space and let
C ⊂ E be compact and convex. Suppose that (Ti)i∈I is a family of maps
Ti : C → C which are linear (even affine suffices) and mutually commuting.
Then there is a point c ∈ C which is a fixed point of every Ti.

Now we can prove that another class of groups are amenable.

Theorem 5.1.3. Abelian locally compact groups are amenable.

Proof. Let M ⊂ L∞(G)∗ be the collection of all means on L∞(G), that is, the
collection of all contractive, positive linear maps L∞(G) → C. The set M is
convex and compact. For each g ∈ G define

Tg : L∞(G)∗ → L∞(G)∗; (Tgm)(φ) := m(g · φ), m ∈ L∞(G)∗, φ ∈ L∞(G).

The maps Tg are linear, (weak*-)continuous, satisfy Tg(M) ⊂M and TgTh =
Tgh = Thg = ThTg (g, h ∈ G). By Theorem 5.1.2 there is m ∈ M with
Tg(m) = m for all g ∈ G. This m is a left-invariant mean.

You might guess that if G is amenable and H is a closed subgroup of G
then H is also amenable — just restrict the left-invariant mean on L∞(G) to
L∞(H), right? It turns out that this does not work, because Haar measure
on H may not be the restriction of a Haar measure on G. This difficulty can
be overcome, but we do not give the proof. The following result collects some
hereditary properties of amenability.

Theorem 5.1.4. Amenability is preserved by the following constructions:

(i) passing to closed subgroups;

(ii) passing to quotients;
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(iii) passing to extensions (in particular, finite direct products of amenable
groups are amenable);

(iv) taking increasing unions.

Exercise 5.1.5. A group G is called solvable if there exist subgroups {e} =
G0, G1, . . . , Gn−1, Gn = G such that Gi is a normal subgroup of Gi+1 and
Gi+1/Gi is abelian for each i. Show that solvable groups are amenable.

Hint. Apply Theorem 5.1.4 part (iii) repeatedly.

Example 5.1.6. The Euclidean motion groups E1 and E2 are solvable (when
equipped with the discrete topology), hence amenable.

Exercise 5.1.7. Show that the Euclidean motion groups En are not amenable
as discrete groups when n ≥ 3.

Hint. Apply Theorem 5.1.4 part (i).

In the above results we regarded En as having the discrete topology, though
they also carry a different topology as subgroups of GL(n,R). On this topic
we quote the following result; see [5, Corollary 1.1.10] for a proof.

Proposition 5.1.8. Let G be a locally compact group. If G is amenable
when equipped with the discrete topology then G is amenable with its original
topology.

Consider the Euclidean motion group En, which contains two important
subgroups: the subgroup of translations, which we identify with Rn, and the
subgroup of rotations about some axis through the origin, given by SO(n,R).
In fact, every element of En can be written as a translation by a ∈ Rn followed
by a rotation by T ∈ SO(n,R), say

x 7→ T (x+ a), x ∈ Rn,

or equivalently as a rotation followed by a translation

x 7→ Tx+ b, x ∈ Rn,

with b = Ta. The collection of translations forms a normal subgroup of En:
for any rotation T ∈ SO(3,R) the element of En given by x 7→ T (T−1(x) + a)
is obviously again a translation, this time by Ta. This means that En is the
semidirect product formed by SO(n,R) acting on Rn, En = RnoSO(n,R), or
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what we called the extension of Rn by SO(n,R) in Theorem 5.1.4. This theo-
rem then allows us to deduce amenability of En in the Euclidean topology. In-
deed, Rn is abelian and therefore amenable, while O(n,R) = π−1({In}), where
In is the n × n identity matrix, O(n,R) = {T ∈ GL(n,R) : T is orthogonal},
and

π : GL(n,R)→ GL(n,R); π(S) := StS.

Since π is continuous this means that O(n,R) is closed, and O(n,R) is ob-
viously bounded, so by the Heine–Borel Theorem O(n,R) is compact; now
SO(n,R) is closed in O(n,R), hence is compact and therefore amenable. It
follows from Theorem 5.1.4 part (iii) that En is amenable.

The message from this section is that, though Euclidean motion groups
are amenable in their Euclidean topology, it is non-amenability of En as a
discrete group (when n ≥ 3) that gives rise to the Banach–Tarski paradox.

5.2 Amenability and paradoxical decompositions

It turns out that the notion of amenability is what we needed to solve the
problem of measure, which is our final goal. The proof below requires the
difficult Hahn–Banach Theorem from functional analysis; it is based on [10,
page 161, Theorem 10.11 (i) =⇒ (v)].

Theorem 5.2.1. Let G be an amenable group of rigid motions of Rn. Then
there is a finitely additive, G-invariant extension of Lebesgue measure to all
subsets of Rn.

Proof. Define spaces

V0 := {φ : Rn → R : φ is Lebesgue integrable}

and

V := {φ : Rn → R : there is ψ ∈ V0 with φ(x) ≤ ψ(x) for all x ∈ Rn}.

One can see that V0 and V are (R-)linear spaces and V0 is a subspace of V .
Both V and V0 have actions of G: for φ in V or V0

(r · φ)(x) := φ(r−1 · x) r ∈ G, x ∈ Rn.

It is clear that r · φ ∈ V0 when φ ∈ V0: since G acts by isometries it preserves
the open, therefore the Lebesgue measurable, sets. If φ ∈ V is bounded by
ψ ∈ V0 then clearly r · φ is bounded by r · ψ, so r · φ ∈ V .
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Let F0 : V0 → R denote the linear map given by Lebesgue integration:

F0(φ) :=

∫
Rn

φ(x) dλ(x), φ ∈ V0.

Define a G-invariant sublinear functional p : V → R by

p(φ) := inf{F0(ψ) : ψ ∈ V0 and φ(x) ≤ ψ(x) for all x ∈ Rn}.

Clearly p(cφ) = cp(φ) for c ∈ R, since F0 and inf both have this property; sub-
additivity of p follows from the properties of inf and linearity of F0. Moreover,
p is G-invariant:

p(r · φ) = inf{F0(ψ) : ψ ∈ V0 and (r · φ)(x) ≤ ψ(x) for all x ∈ Rn}
= inf{F0(r

−1 · ψ) : r−1 · ψ ∈ V0 and φ(x) ≤ (r−1 · ψ)(x) ∀ x ∈ Rn}
= inf{F0(ψ) : r−1 · ψ ∈ V0 and φ(x) ≤ (r−1 · ψ)(x) ∀ x ∈ Rn}
= p(φ).

By definition F0(φ) ≤ p(φ) for all φ ∈ V0, so by the Hahn–Banach Theorem,
Theorem C.0.2, there is a linear map F : V → R which extends F0: F (φ) =
F0(φ) for φ ∈ V0 and F is dominated by p:

−p(−φ) ≤ F (φ) ≤ p(φ), φ ∈ V.

We want to define our extension of Lebesgue measure using this map F , but
F is not G-invariant. This is where we must use amenability of G.

Given φ ∈ V define another function

θφ : G→ R ∪ {∞}; θφ(r) := F (r−1 · φ), r ∈ G.

We have

θφ(r) = F (r−1 · φ) ≤ p(r−1 · φ) = p(φ),

θφ(r) = F (r−1 · φ) ≥ −p
(
− (r−1 · φ)

)
= −p

(
r−1 · (−φ)

)
= −p(−φ).

Note that we used linearity of the action of G in the second calculation. Let ν
be a measure on G arising from amenability of G, so ν is finitely additive, G-
invariant, defined on all subsets of G and ν(G) = 1. Finally, define a measure
on Rn by

µ(A) :=

{∫
G θχA(r) dν(r) if χA ∈ V ;

∞ otherwise.
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It remains to prove that this is the measure we are looking for: it is finitely
additive, G-invariant, defined on all subsets of Rn and extends Lebesgue mea-
sure. Clearly µ is defined on all subsets of Rn. For finite additivity suppose
A,B ⊂ Rn are disjoint, and assume χA∪B ∈ V ; then

µ(A ∪B) =

∫
G
θχA∪B (r) dν(r) =

∫
G
F
(
r−1 · (χA∪B)

)
dν(r)

=

∫
G
F
(
r−1 · χA

)
+ F

(
r−1 · χB

)
dν(r) = µ(A) + µ(B),

where we use that χA∪B = χA + χB (since A∩B = ∅), linearity of the action
of G and linearity of F . If µ(A) = ∞ or µ(B) = ∞ then clearly χA∪B /∈ V ,
so µ(A ∪B) =∞. For G-invariance, again suppose χA ∈ V , and r ∈ G, so

µ(s ·A) =

∫
G
F (r−1 · χs·A) dν(r) =

∫
G
F (χ(r−1s)·A) dν(r)

=

∫
G
F
(
(s−1r)−1 · χA

)
dν(r) =

∫
G
F
(
t−1 · χA

)
dν(t) = µ(A).

We used that r−1 · χB = χr−1B and also the G-invariance of ν to change
the variable. To see that µ extends Lebesgue measure suppose A ⊂ Rn and
λ(A) <∞, then χA ∈ V0, so

µ(A) =

∫
G
θχA(r) dν(r) =

∫
G
F (r−1 · χA) dν(r) =

∫
G
F0(r

−1 · χA) dν(r)

=

∫
G
F0(χ(A)) dν(r) = λ(A)

∫
G
dν(r) = λ(A)ν(G) = λ(A).

On the other hand, if λ(A) = ∞ then χA /∈ V0, so µ(A) = ∞ also. We have
therefore given the desired extension of Lebesgue measure.

The above result solves the problem of measure for Rn.

Corollary 5.2.2. The problem of measure has a positive solution for R1 and
R2 and a negative solution when n ≥ 3. More specifically, when n = 1, 2 there
is an extension of Lebesgue measure to a En-invariant measure on all subsets
of Rn; when n ≥ 3 no such extension exists, but one can obtain an extension
which is invariant under the action of any amenable subgroup of En.

Proof. We have seen in Example 5.1.6 and Exercise 5.1.7 that E1 and E2 are
amenable (when regarded as discrete groups) and that En is not amenable for
n ≥ 3 (when regarded as a discrete group it contains a closed non-amenable
subgroup isomorphic to F2). The statements are then immediate from Theo-
rem 5.2.1.





Appendix A

Integration against
finitely-additive measures

Here we give the required definition for integrating against a finitely additive
measure.

The characteristic function of a set A ⊂ X is defined

χA : X → C; χA(x) :=

{
1 if x ∈ A;

0 otherwise.

Recall that an algebra on X is a collection of subsets A of X which contains
the empty set and is closed under complements and finite unions (therefore
also finite intersections).

Definition A.0.1. Let (X,A) be a set equipped with an algebra A. A simple
function from X to C is a function of the form

∑n
i=1 ciχAi, where ci ∈ C and

Ai ∈ A.

There is a natural definition of integral for simple functions.

Definition A.0.2. Let µ be a finitely-additive measure on (X,A). For a
simple function f =

∑n
i=1 ciχAi we define the integral of f with respect to µ

by ∫
X
f(x) dµ(x) :=

n∑
i=1

ciµ(Ai).

This definition, together with the next result, allows us to define the in-
tegral of a function. Of course, the integral may take the value +∞. Recall

39



40
APPENDIX A. INTEGRATION AGAINST FINITELY-ADDITIVE

MEASURES

that a function φ : X → C is called measurable if φ−1(U) ∈ A for all measur-
able sets U ⊂ C. Let L∞(X,µ) denote the collection of measurable functions
φ : X → C such that ‖φ‖∞ is finite, where ‖ · ‖∞ denotes the supremum norm

‖φ‖∞ := esssup{|φ(x)| : x ∈ X}.

We met L∞(X,µ) in Chapter 5, in the case that µ is counting measure, and
wrote `∞(X) in this case.

Proposition A.0.3. The collection of simple functions is dense in L∞(X,µ)
when the latter space is equipped with the supremum norm; that is, for any
φ ∈ L∞(X,µ) and ε > 0 there is a simple function f with ‖f − φ‖∞ < ε.

Finally, we can define the integral of a function.

Theorem A.0.4. For a function φ ∈ L∞(X,µ) and a finitely-additive mea-
sure µ on (X,A) define∫

X
φ(x) dµ(x) := lim

k

∫
X
fk(x) dµ(x), ‖fk − φ‖∞

k→ 0.

The map

Iµ : L∞(X,A)→ C; Iµ(φ) :=

∫
X
φ(x) dµ(x)

is linear, and positive when µ is.



Appendix B

Haar measure

Definition B.0.1. A topological group is a group G which is also a topological
space, such that the operations

G×G→ G; (g, h) 7→ gh and G→ G; g 7→ g−1

are continuous. A locally compact group is a topological group which is locally
compact and Hausdorff as a topological space.

Examples B.0.2. (i) Any group equipped with the discrete topology (e.g. Z
or Fn) is an example; such groups are called discrete groups.

(ii) The groups Rn with the Euclidean topology are locally compact groups.

(iii) The matrix groups GL(n,R) are locally compact with the topology they
inherit as a subset of Rn2

.

(iv) The group Q is not a locally compact group with the topology as a subset
of R.

Often when working with topological groups it suffices to consider neigh-
bourhoods of the unit element e ∈ G, since if U is an open neighbourhood
containing e then gU is an open neighbourhood containing g ∈ G.

We like to work with locally compact groups because they always carry a
measure, called Haar measure, which interacts well with the group structure.
We refer to [2, Section 9.3] for the proof of the following result. Recall that
B(G) denotes the collection of Borel sets of the topological space G; that is,
the smallest σ-algebra on G containing all open subsets of G.
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Theorem B.0.3. Let G be a locally compact group. There is a non-zero
regular (countably additive) measure µ on (G,B(G)) which is left-invariant:

µ(gA) = µ(A) for all g ∈ G, A ∈ B(G).

Such a measure µ is called a Haar measure. This measure is unique up to
a positive constant, that is, if ν is another Haar measure on (G,B(G)) then
there is c > 0 such that µ = cν.

For any discrete group counting measure is a Haar measure, since |gA| =
|{ga : a ∈ A}| = |A|. When a group is compact it is often convenient to
normalise Haar measure by choosing the number c in Theorem B.0.3 so that
the measure of the whole group is 1. Lebesgue measure on Rn is also an
example of Haar measure (this is really what Theorem 4.1.6 says), but this
time we choose c so that [0, 1]n has measure 1.



Appendix C

The Hahn–Banach Theorem

The Hahn–Banach Theorem is an essential result in functional analysis. We
only need a few definitions and the statement of the result; the proof is far
beyond the scope of these notes — it can be found in most textbooks on
functional analysis.

Definition C.0.1. Let V be a real vector space. Recall that a linear functional
on V is a linear map from V to R. A sublinear functional on V is a map
p : V → R such that:

(i) p(cv) = cp(v) for all v ∈ V and c ∈ [0,∞);

(ii) p(v + w) ≤ p(v) + p(w) for all v, w ∈ V .

For example, if V = Rn the usual Euclidean distance p(x) := |x| is a
sublinear functional on Rn.

Now we can state the Hahn–Banach Theorem.

Theorem C.0.2. Let V be a real vector space and V0 ⊂ V a subspace. Suppose
that F0 : V0 → R is a linear functional and p : V → R is a sublinear functional
such that F0(v) ≤ p(v) for all v ∈ V0. Then there is a linear functional
F : V → R which extends F0:

F (v) = F0(v) for all v ∈ V0,

and satisfying
−p(−v) ≤ F (v) ≤ p(v) for all v ∈ V .

The remarkable thing about the Hahn–Banach Theorem is that we can
extend F0 to a (possibly much larger) space while still keeping the extension
dominated by p.
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Note that the axiom of choice is required to prove the Hahn–Banach The-
orem, so this is another place in these notes where the axiom of choice is used
in an essential way. The use of the axiom of choice means that the Hahn–
Banach Theorem is non-constructive — the only information we have is that
the extension exists.
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