
MATH 116 REVISION

ANDREW MCKEE

Part 1: Integrals

Sums. Sigma notation is a compact way to write the sum of several terms:
n∑

i=m

ai = am + am+1 + am+2 + · · ·+ an−1 + an.

The main properties of this notation are:
n∑
i=1

cai = c

n∑
i=1

ai,

n∑
i=1

(ai + bi) =

n∑
i=1

ai +

n∑
i=1

bi,

n∑
i=1

c = cn.

Some sums are telescoping, which means that most of their terms cancel out.

Example. Calculate

50∑
i=3

(
1

5i
− 1

5i+1

)
.

Solution. We have
50∑
i=3

(
1

5i
− 1

5i+1

)
=

(
1

53
− 1

54

)
+

(
1

54
− 1

55

)
+ · · ·+

(
1

549
− 1

550

)
+

(
1

550
− 1

551

)
=

1

53
− 1

551
=

1

53

(
1− 1

548

)
.

�

There are useful formulae for sums such as
∑n
i=1 i = 1

2n(n+ 1), which will be provided in exams.

Area. The area of a rectangle is the product of its length and width; the area of a triangle is 1
2bh, where

b is the length of the base and h the perpendicular height. If a shape cannot be split into rectangles and
triangles, for example if the edges are curved, then it is not so easy to define its area.

To calculate the area of any region we first approximate the area by dividing the region into n rectangles
of equal width, the length of each rectangle varies according to the shape of the region, and the area of the
region is approximately the sum of the areas of the rectangles (which we know how to calculate). Letting
the number of rectangles n go to infinity makes the error of the approximation smaller, so the area should
be the limit of the areas of the rectangles.

If f is a continuous function on the interval [a, b] then the area A under f between a and b (i.e. the area
between f , the x-axis and the lines x = a and x = b) is

A = lim
n→∞

Rn = lim
n→∞

n∑
i=1

f(xi)∆x, ∆x =
b− a
n

.

This is the limit of the right endpoint approximations Rn; equivalently, A can be expressed as the limit of
the left endpoint approximations Ln:

A = lim
n→∞

Ln = lim
n→∞

n−1∑
i=0

f(xi)∆x, ∆x =
b− a
n

.

If v(t) is the velocity function of an object then the distance travelled by the object in a time interval
can be approximated by areas of rectangles similarly to above; in this case the width of an approximating
rectangle is a small time interval ∆t, the height of this rectangle is the velocity of the particle at some point

1
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during the small time interval, so the area of the rectangle is the distance the object travels during that time
interval if the velocity is constant over that time interval.

The definite integral. The definite integral
∫ b
a
f(x) dx of a function f over an interval [a, b] represents a

difference of areas on the interval [a, b]: the area above the x-axis and under f subtract the area under the
x-axis and above f . The numbers a and b are called the lower and upper limits of integration; the function
f(x) is the integrand.

Definition. If f is a function defined on [a, b] divide the interval [a, b] in n subintervals of width ∆x = b−a
n ,

with endpoints x0 = a, x1, x2, . . . , xn−1, xn = b where xi = a+ i∆x. Let x∗i ∈ [xi−1, xi]. The definite integral
of f from a to b is ∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(x∗i )∆x,

provided this limit exists and has the same value for any choice of the numbers x∗i . We often choose x∗i = xi
and use ∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(xi)∆x.

Theorem. If f is continuous on [a, b], or if f has only a finite number of jump discontinuities on [a, b],
then f is integrable on [a, b].

We calculate definite integrals using the properties of limits and the summation formulae.

Example. Calculate

∫ 2

−1
x2 − 2 dx.

Solution. We have ∆x = 2−(−1)
n = 3

n , so xi = 3i
n − 1. Therefore, using the summation formulae,∫ 2

−1
x2 − 2 dx = lim

n→∞

n∑
i=1

f(xi)∆x = lim
n→∞

n∑
i=1

((
3i

n
− 1

)2

− 2

)
3

n

= lim
n→∞

3

n

(
n∑
i=1

9i2

n2
−

n∑
i=1

6i

n
−

n∑
i=1

1

)

= lim
n→∞

(
27

n3
n(n+ 1)(2n+ 1)

6
− 18

n2
n(n+ 1)

2
− 3

n
n

)
= lim
n→∞

(
9

2

n

n

n+ 1

n

2n+ 1

n
− 9

n

n

n+ 1

n
− 3

n

n

)
=

9

2
(1)(1 + 0)(2 + 0)− 9(1)(1 + 0)− 3(1) = −3.

�

The definite integral has the following properties:∫ b

a

f(x) dx = −
∫ a

b

f(x) dx,

∫ a

a

f(x) dx = 0,

∫ b

a

c dx = c(b− a),

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx,

∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx,

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx,

∫ b

a

f(x) dx ≥ 0 if f(x) ≥ 0 for all x ∈ [a, b],

∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx if f(x) ≥ g(x) for all x ∈ [a, b],

m(b− a) ≤
∫ b

a

f(x) dx ≤M(b− a) if m ≤ f(x) ≤M for all x ∈ [a, b].
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Fundamental theorem of calculus. Let f be continuous on [a, b]; we consider the function g(x) =∫ x
a
f(t) dt. The function g represents “area so far” under f .

Theorem. Suppose f is continuous on [a, b].

FTC1: If g(x) =
∫ x
a
f(t) dt then g is continuous on [a, b], differentiable on (a, b) and g′(x) = f(x).

FTC2:
∫ b
a
f(x) dx = F (b)− F (a) for any antiderivative F of f (F ′ = f).

FTC1, together with the properties of the definite integral, can be used to calculate certain derivatives.

Example. Find the derivative of g(x) =

∫ π/4

√
x

θ tan(θ) dθ.

Solution. Using the properties of the definite integral

g(x) = −
∫ √x
π/4

θ tan(θ) dθ = −f ◦ h(x),

where h(x) =
√
x and f(x) =

∫ x
π/4

θ tan(θ) dθ. By the chain rule g′(x) = −f ′(h(x))h′(x). We have h′(x) =
1

2
√
x

and by FTC1 f ′(x) = x tan(x), so

g′(x) = −f ′(h(x))h′(x) = −
√
x tan

(√
x
) 1

2
√
x

= −1

2
tan

(√
x
)
.

�

FTC2 allows us to calculate definite integrals using antiderivatives:∫ b

a

f(x) dx = [F (x)]
b
a = F (b)− F (a)

where F (x) is any antiderivative for f .

Example. Calculate

∫ 3

0

2 sin(x)− ex dx.

Solution. Using FTC2∫ 3

0

2 sin(x)− ex dx = [−2 cos(x)− ex]
3
0 =

(
−2 cos(3)− e3

)
−
(
−2 cos(0)− e0

)
= 3− 2 cos(3)− e3,

since d
dx (−2 cos(x)− ex) = 2 sin(x)− ex. �

The fundamental theorem of calculus tells us that differentiation and integration are inverse processes.
FTC1 says that d

dx (
∫ x
a
f(t) dt) = f(x), i.e. the derivative of the integral of f is f . FTC2 says that∫ b

a
f ′(x) dx = f(b)− f(a), i.e. the integral of the derivative of f can be found from f .

Indefinite integrals. FTC2 says that definite integrals can be calculated using antiderivatives, so we write
antiderivatives using integral notation:

∫
f(x) dx is the indefinite integral of f and

∫
f(x) dx = F (x) means

F ′(x) = f(x). An indefinite integral represents a family of functions (remember a definite integral represents
a number), so we always write

∫
f(x) dx = F (x) + c, where F ′ = f and c represents a constant. We write

indefinite integrals in this way even though the expression may only be valid on an interval, not on all of the
real line.

FTC2 says that

∫ b

a

f(x) dx =

[∫
f(x) dx

]b
a

. The example
∫ 3

0
2 sin(x) − ex dx above can be seen as an

example of calculating a definite integral using indefinite integrals.



4 ANDREW MCKEE

Net change. The net change of a function f over an interval [a, b] is the difference f(b) − f(a). The net
change theorem is a consequence of FTC2.

Theorem. The integral of a rate of change is the net change, i.e.

∫ b

a

F ′(x) dx = F (b)− F (a).

Examples of net changes include:

• if P (t) represents the population of a country at time t (which may increase at some times and
decrease at others) the rate of growth of the population is dP

dt , and from time t1 to t2 the overall

change in population is
∫ t2
t1

dP
dt dt = P (t2)− P (t1).

• If V (t) represents the volume of water in a container at time t then dV
dt is the change in volume

(which may be positive or negative depending on how much water is flowing in and out) and from

time t1 to t2 the overall change in volume is
∫ t2
t1

dV
dt dt = V (t2)− V (t1).

• If v(t) represents the velocity of an object at time t, so v(t) = s′(t) with s the position function of

the object, then from time t1 to t2 the displacement is
∫ t2
t1
v(t) dt = s(t2)− s(t1). The total distance

travelled by the object in this time interval is
∫ t2
t1
|v(t)| dt (a technique for calculating this type of

integral is given below).

Basic integration techniques. To find the definite integral of
∫ b
a
|f(x)| dx split the interval [a, b] in subin-

tervals such that f does not change sign on each subinterval, then use that |y| = y if y ≥ 0 and |y| = −y if
y < 0.

Example. Calculate

∫ 2

0

∣∣t3 − 1
∣∣ dt.

Solution. Note that t3 − 1 < 0 ⇐⇒ t < 1 and t3 − 1 ≥ 0 ⇐⇒ t ≥ 1, so we split the interval [0, 2] in
subintervals [0, 1] and [1, 2]. Then∫ 2

0

∣∣t3 − 1
∣∣ dt =

∫ 1

0

∣∣t3 − 1
∣∣ dt+

∫ 2

1

∣∣t3 − 1
∣∣ dt =

∫ 1

0

1− t3 dt+

∫ 2

1

t3 − 1 dt

=

[
t− t4

4

]1
0

+

[
t4

4
− t
]2
1

= 1− 1

4
+ 2− 3

4
= 2.

�

Integration by substitution is the integral version of the chain rule; it allows us to calculate integrals of
the form

∫
f ′(g(x))g′(x) dx by choosing u = g(x), so du = g′(x) dx and

∫
f ′(g(x))g′(x) dx =

∫
f ′(u) du. It

may happen that one needs to multiply by a constant so that cdu = g′(x) dx as in the second example below;
it is helpful to remember that one can work with du and dx as if they obey the normal rules of algebra.

Example. Calculate

∫
cot(θ) dθ.

Solution. Recall cot(θ) = cos(θ)
sin(θ) . Let u = sin(θ), so du = cos(θ) dθ. Therefore∫

cot(θ) dθ =

∫
cos(θ)

sin(θ)
dθ =

∫
1

u
du = ln |u|+ c = ln | sin(θ)|+ c.

�

When finding a definite integral by substitution remember to keep track of how the limits of integration
change (or change back to the original variable before evaluating at the limits of integration).

Example. Calculate

∫ π
4

0

32 sec(x) sec(x) tan(x) dx.

Solution. Let u = 2 sec(x), so du
dx = 2 sec(x) tan(x). Thus du = 2 sec(x) tan(x) dx, so 1

2du = sec(x) tan(x) dx.

We have x = 0 =⇒ u = 2 and x = π/4 =⇒ u = 4/
√

2 = 2
√

2, so∫ π
4

0

32 sec(x) sec(x) tan(x) dx =

∫ 2
√
2

2

1

2
3u du =

1

2

[
3u

ln(3)

]2√2

2

=
1

2 ln(3)

(
32
√
2 − 32

)
.
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�

Some choices of substitution will not make the integral easier to solve (for example u = sec(x) tan(x) in the
example above), but there may be several substitutions that work.

Alternative solution. Let u = 32 sec(x), so du = 32 sec(x)2 ln(3) sec(x) tan(x) dx, so rearranging gives 1
2 ln(3)du =

32 sec(x) sec(x) tan(x) dx. Thus∫ π
4

0

32 sec(x) sec(x) tan(x) dx =

∫ x=π
4

x=0

1

2 ln(3)
du =

1

2 ln(3)
[u]

x=π
4

x=0 =
1

2 ln(3)

[
32 sec(x)

]π
4

0
=

1

2 ln(3)

(
32
√
2 − 32

)
.

�

Substitutions can be also be used to simplify the integrand.

Example. Calculate

∫ √
1 + x4x7 dx.

Proof. Substitute u = 1 + x4, so du = 4x3 dx =⇒ 1
4du = x3 dx. The factor x7 in the integrand becomes

1
4x

4 du, and x4 = u− 1. Therefore∫ √
1 + x4x7 dx =

∫
1

4

√
u(u− 1) du =

1

4

∫
u

3
2 − u 1

2 du =
2

5
u

5
2 − 2

3
u

3
2 + c.

�

Tips for integration by substitution:

• look for a factor f(u) in the integrand, with u a function of the variable of integration and an
expression like du

dx also a factor in the integrand;
• practice and don’t be discouraged: if a substitution does not work try another.

Part 2: Applications of integration

Area between curves. To find the area enclosed by two curves we approximate the area using rectangles,
then take the limit of the total area of these rectangles, just as we did when defining the definite integral as
the area between a curve and the x-axis.

Definition. Let f and g be continuous functions and f(x) ≥ g(x) for a ≤ x ≤ b. The area of the region
enclosed by the curves y = f(x) and y = g(x) and the lines x = a and x = b is

A =

∫ b

a

f(x)− g(x) dx.

To answer questions on area between curves you will sometimes have to decide:

• to integrate with respect to x or y;
• the limits of integration a and b;
• which curve is above and which below, and if this is different on subintervals of [a, b];
• which curves bound the region if more than two curves are given.

The general formula for the area between curves y = f(x) and y = g(x) and the lines x = a and x = b is

A =

∫ b

a

|f(x)− g(x)| dx;

deciding which curve is above and below on a subinterval amounts to our technique for integrating absolute
values by splitting up the integral. The steps are:

(1) decide if integration should be with respect to x (curves given as y = f(x) or with respect to y
(curves given as x = g(y));

(2) find all intersection points, remembering any restrictions in the question: the least and greatest of
these are the limits of integration (unless another line is specified), the others are when the curves
cross;

(3) draw a diagram with everything you know;
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(4) using the intersection points split the interval in subintervals, use test values to determine which
curve is above and below on each interval and check this matches the diagram;

(5) write the area as a sum of integrals according to what you have found, find the area by evaluating
the integrals;

(6) remember that evaluating the integrals may require a substitution, or some of the other techniques
explained below.

Example. (a) Find the area enclosed by the curves x = y3 and x = y.
(b) Find the area enclosed by the curves y = 1

4x
2, y = 2x2 and x+ y = 3 in the region x ≥ 0.

Solution. (a) Since one of the equations is of the form x = g(y) we will integrate with respect to y. To find
intersection points: y3 = y ⇐⇒ y(y2 − 1) = 0 ⇐⇒ y = −1, 0, 1; therefore our limits of integration are

−1 and 1 and the curves cross when y = 0. The required area is
∫ 1

−1 |y
3 − y| dy; to simplify the absolute

value we split the integral over the intervals [−1, 0] and [0, 1]. To see which curve is above on [−1, 0] take
−1/2 ∈ [−1, 0]: (−1/2)3 = −1/8 > −1/2, so x = y3 is above x = y here. To see which curve is above on
[0, 1] take 1/2 ∈ [0, 1]: (1/2)3 = 1/8 < 1/2, so x = y is above x = y3 here. Hence the required area is∫ 1

−1
|y3−y| dy =

∫ 0

−1
y3−y dy+

∫ 1

0

y−y3 dy =

[
y4

4
− y2

2

]0
−1

+

[
y2

2
− y4

4

]1
0

= 0−
(

1

4
− 1

2

)
+

(
1

2
− 1

4

)
−0 =

1

2
.

(b) We will integrate with respect to x. Intersection points: 1
4x

2 = 2x2 ⇐⇒ x = 0; 1
4x

2 = 3 − x ⇐⇒
x2 + 4x− 12 = 0 ⇐⇒ x = −6, 2; 2x2 = 3− x ⇐⇒ 2x2 + x− 3 = 0 ⇐⇒ x = −3/2, 1. The limits of
integration are 0 and 2 (x = −6 and x = −3/3 are excluded by the condition x ≥ 0); we will split our
integral over the intervals [0, 1] and [1, 2]. To see which curves are needed on [0, 1] test with x = 1/2:
1
4 (1/2)2 = 1/16, 2(1/2)2 = 1/2 and 3 − 1/2 = 5/2, so 1

4x
2 ≤ 2x2 ≤ 3 − x on this interval. On the

interval [1, 2] we find 1
4x

2 ≤ 3− x ≤ 2x2. This shows the lower bound of the region is always the curve

y = 1
4x

2, and the upper bound of the region is the closer curve on each subinterval: y = 2x2 on [0, 1]
and y = 3− x on [1, 2]. The required area is therefore∫ 1

0

2x2−1

4
x2 dx+

∫ 2

1

(3−x)−1

4
x2 dx =

[
7

12
x3
]1
0

+

[
3x− x2

2
− x3

12

]2
1

=
7

12
+

(
6− 2− 2

3

)
−
(

3− 1

2
− 1

12

)
=

3

2
.

�

Volumes. A generalised cylinder is a solid which has a face of area A and length l, slices of the object
parallel to the face are the same shape and area as the face; such an object has volume V = Al. For
example, a rectangular box or a normal cylinder with circular face.

To compute the volume of any solid we slice it in n pieces (which results in slicing the x-axis in n
subintervals [xi−1, xi] of width ∆x), each piece is approximately a generalised cylinder of area A(xi) and
thickness ∆x, so with volume A(xi)∆x. Adding the volumes of these generalised cylinders approximates the
total volume of the solid, and the approximation improves as n becomes larger. Taking the limit we arrive
at the definition of volume of a solid.

Definition. Let S be a solid that lies between x = a and x = b. The cross-sectional area of S, perpendicular
to the x-axis, is A(x) for some continuous function A. The volume of S is

V =

∫ b

a

A(x) dx.

Example. Find the volume of the solid S with base a circle of radius 1 and cross sections of S perpendicular
to the base are squares.

Solution. We choose the base to be the circle x2 + y2 = 1, which is centred at the origin. Since turning the
base through π/2 radians gives the same shape we are free to choose any orientations for the slices whose
integral gives the volume of S; we choose slices perpendicular to the x-axis so our integration is with respect
to x. The slice of S at a distance x from the origin has base length 2y = 2

√
1− x2, so the area of this slice

is A(x) = (2y)2 = 4(1− x2). Since S lies between x = −1 and x = 1 the volume is

V =

∫ 1

−1
A(x) dx =

∫ 1

−1
4(1− x2) dx = 8

∫ 1

0

1− x2 dx = 8

[
x− x3

3

]1
0

=
16

3
.
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(We used that the integrand is even to simplify the integral.) �

A solid of revolution is a solid formed by rotating a region around an axis.
The disc/washer method for finding the volume of a solid of revolution around a line of the form y = c,

which is parallel to the x-axis (y = 0 is the x-axis) takes slices perpendicular to the x-axis with area
A(x) = π(r22 − r21), where r2 is the outer radius of the washer and r1 the inner radius. If the solid lies
between x = a and x = b its volume is

V =

∫ b

a

A(x) dx =

∫ b

a

π(r22 − r21) dx;

The bounds x = a and x = b may be given, or may need to be worked out from the intersection points of
the curves. To find the inner and outer radius:

(1) write the axis of rotation as y = c;
(2) write the curves which bound the region as y = f(x) and y = g(x); determine which of |f(x)− c| or
|g(x)− c| is greater on the interval [a, b];

(3) if |f(x) − c| is greater then take r2 = f(x) − c and r1 = g(x) − c, if |g(x) − c| is greater then take
r2 = g(x)− c and r1 = f(x)− c (strictly speaking we may have found −r1 and −r2 but it does not
matter).

If the axis of rotation is a line x = c (x = 0 is the y-axis) then integrate with respect to y, follow the
above procedure with the roles of x and y exchanged.

Example. Find the volume of the solid obtained by rotating the region bounded by y = sin(x), y = cos(x),
0 ≤ x ≤ π/4, about the axis y = −1.

Solution. Since the axis y = −1 is parallel to the x-axis we will integrate with respect to x. To find the
inner and outer radius of a washer note | cos(x) − (−1)| = cos(x) + 1 and | sin(x) − (−1)| = sin(x) + 1 on
the interval [0, π/4]; since cos(x) ≥ sin(x) on this interval we have | cos(x)− (−1)| ≥ | sin(x)− (−1)| on this
interval, so the outer radius of a washer is cos(x) − (−1) and the inner radius is sin(x) − (−1). Hence the
area of a washer is

A(x) = π (cos(x)− (−1))
2 − π (sin(x)− (−1))

2
= π

(
cos2(x) + 2 cos(x)− sin2(x)− 2 sin(x)

)
= π (cos(2x) + 2 cos(x)− 2 sin(x)) ,

the last equality uses a trig identity to make the integration below easier. Therefore the volume of the solid
is

V =

∫ b

a

A(x) dx =

∫ π
4

0

π (cos(2x) + 2 cos(x)− 2 sin(x)) dx = π

[
1

2
sin(x) + 2 sin(x) + 2 cos(x)

]π
4

0

= π

((
1

2
+
√

2 +
√

2

)
− (0 + 0 + 2)

)
= π

(
2
√

2− 3

2

)
.

�

In certain cases it can be difficult, or even impossible, to calculate the volume of a solid of revolution by
the disc/washer method, because it is difficult to write the (inner or outer) radius above in terms of the
variable of integration. When this happens we can use the method of cylindrical shells; rather than finding
the volume by stacking discs/washers of variable radius we stack hollow cylinders of variable height inside
each other.

Let S be a solid formed by rotating the area between the curves y = f(x) and y = g(x) and the lines
x = a and x = b about the line x = c. The volume of S calculated using cylindrical shells is

V =

∫ b

a

2πrh dx,

where h = f(x)− g(x) is the height of a shell (assuming f(x) ≥ g(x) for x ∈ [a, b]) and r is the radius of a
shell: r = x − c if c ≤ a < b and r = c − x if a < b ≤ c. If the region is rotated about the line y = c then
exchange the roles of x and y above and integrate with respect to y. If S is the region between the curve
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y = f(x) and the x-axis on the interval [a, b], with f(x) ≥ 0 on [a, b], then g(x) = 0, so h = f(x); if the axis
of rotation is the y-axis (the line x = 0) then r = x, so in this special case

V =

∫ b

a

2πrh dx =

∫ b

a

2πxf(x) dx.

Example. Use cylindrical shells to find the volume of the solid generated by rotating the region bounded by
x = 2y2 and x = y2 + 1, about the line y = −2.

Solution. Since the axis of rotation is of the form y = c the integral will be with respect to y. The curves
x = 2y2 and x = y2+1 intersect when 2y2 = y2+1 ⇐⇒ y2−1 = 0 ⇐⇒ y = ±1, so the limits of integration
are −1 and 1. On the interval [−1, 1] we have y2+1 ≥ 2y2, so the height of a shell is h = y2+1−2y2 = 1−y2.
To find r note that c = −2 ≤ a = −1 < b = 1, so the definition above tells us r = y − (−2) = y + 2. Hence

V =

∫ b

a

2πrh dy =

∫ 1

−1
2π(y + 2)(1− y2) dy = 2π

∫ 1

−1
−y3 − 2y2 + y + 2 dy

= 2π

[
−y

4

4
− 2

3
y3 +

y2

2
+ 2y

]1
−1

= 2π

((
−1

4
− 2

3
+

1

2
+ 2

)
−
(
−1

4
+

2

3
+

1

2
− 2

))
=

16π

3
.

�

To decide whether cylindrical shells or the disc/washers method is better to compute a given volume one
may have to simply try setting up each integral; in the tests and exams you will be told which method to
use.

Example. Consider the region R enclosed by the curves y = x3 and y = x2.

(a) Use the disc/washer method to find the volume of the solid formed by rotating S about the line y = −2.
(b) Use the method of cylindrical shells to find the volume of the solid formed by rotating S about the y-axis.

Solution. (a) Since the axis of rotation is y = −2 we integrate with respect to x. The curves intersect when
x2 = x3 ⇐⇒ x = 0 or x = 1, which gives the limits of integration. Testing with x = 1/2 ∈ [0, 1] we see
that x2 ≥ x3 on the interval [0, 1], so outer radius is x2 − (−2) and inner radius x3 − (−2). Hence the
area of a washer is A(x) = π(x2 + 2)2 − π(x3 + 2)2 = π(x4 + 4x2 − x6 − 4x3). Therefore the volume is

V =

∫ 1

0

A(x) dx =

∫ 1

0

π(x4 + 4x2−x6− 4x3) dx = π

[
x5

5
+

4

3
x3 − x7

7
− x4

]1
0

= π

(
1

5
+

4

3
− 1

7
− 1

)
=

41

105
.

(b) In this case we also integrate with respect to x. The radius of a shell is r = x − 0 and the height of a
shell is x2− x3 (since we know from (a) that x2 is above x3 on the interval [0, 1]). Therefore the volume
is

V =

∫ 1

0

2πrh dx = 2π

∫ 1

0

x(x2 − x3) dx = 2π

[
x4

4
− x5

5

]1
0

= 2π

(
1

4
− 1

5

)
=

π

10
.

�

Work. For a constant force F to move an object the distance from x = a to x = b the work done is equal
to the force multiplied by the distance: W = F (b− a). This can be interpreted as the area under the graph
of distance on the x-axis and force on the y-axis. If the force F = f(x) changes as the distance x changes
the work done is still the area under the graph of x against f(x), so we arrive at the following definition.

Definition. If an object moves from x = a to x = b under the action of a force f(x) (depending on x) the

work done is W =

∫ b

a

f(x) dx.

If a cable hangs vertically and is pulled in from the top the force needed to pull the cable decreases, since
the force needed is equal to the weight of the part of the cable which is still hanging down. The work required

to pull in a vertically hanging cable of length l and mass m is W =

∫ l

0

mg

l
x dx, where g is the acceleration

due to gravity (mgl is the weight of the cable per unit length).

Example. A rope weighing 90 Newtons, of length 20 metres, is used to raise a bucket filled with water. The
weight of the bucket is 10 Newtons and the weight of water in the bucket before it is raised is 20 Newtons.
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(a) Calculate the work done if the amount of water in the bucket is constant.
(b) Calculate the work done if the bucket is raised at a constant speed and water leaks from the bucket at a

constant rate, so that the bucket becomes empty as it reaches the top.

Solution. (a) Since the weight of bucket and water is constant the force needed to raise the bucket full of
water is also constant, so the work done in raising the bucket and water is Fd = 30(20) = 600 joules.
The total work done is the sum of the work on the bucket of water and the work on the rope. Our
formula says the work on the rope is∫ l

0

mg

l
x dx =

90

20

∫ 20

0

x dx =
9

2

[
x2

2

]20
0

= 900

(we are given the weight of the rope mg, not the mass of the rope m). The total work is the sum
W = 600 + 900 = 1500 joules.

(b) Since the bucket is raised at a constant speed we can write the weight of water remaining in the bucket
as a function of the distance x the bucket has to be raised. The amount of water leaking per metre raised
is 20/20 = 1 (numerator is total water in bucket, denominator total metres raised); when the bucket has
x metres remaining to be raised the water left in the bucket weighs 20

20 (x) = x Newtons. Therefore the
total work required is∫ 20

0

10 + x+
90

20
x dx =

[
10x+

x2

2
+

9x2

2

]20
0

= 200 + 200 + 900 = 1300.

(The first term in the integrand is the weight of the bucket, the second term is the weight of water, the
third is the rope.)

�

Hooke’s law states that the force required to maintain a spring stretched x units beyond its natural length
is proportional to x, i.e. f(x) = kx where k > 0 is a number called the spring constant. The work done in

stretching a spring from a units passed natural length to b units passed its natural length is W =

∫ b

a

kx dx,

where k is the spring constant.

Example. (a) If the force required to maintain a spring 0.5 metres past its natural length is 12 Newtons
find the work required to stretch the spring from its natural length to 0.2 metres past its natural length.

(b) If work required to extend a spring from 1 foot past its natural length to 2 feet past its natural length is
9 ft-lbs hom much force is required to hold the spring 0.5 feet past its natural length?

Solution. (a) By Hooke’s Law f(x) = kx, so 12 = 0.5k and therefore k = 24. Now our formula for work
states the required work is

W =

∫ b

a

kx dx =

∫ 0.2

0

24x dx = 24

[
x2

2

]0.2
0

=
12

5
.

(b) Our formula for work states that

W =

∫ b

a

kx dx =⇒ 9 =

∫ 2

1

kx dx =

[
kx2

2

]2
1

= k

(
2− 1

2

)
=

3k

2
.

Therefore k = 2(9)/3 = 6. The required force is therefore kx = 6(0.5) = 3.
�

The final type of example involves emptying water from a tank. Steps:

(1) let x be the depth below the surface of the tank, so x = 0 is the top of the tank and x = d is the
bottom of the tank;

(2) the volume of a slice, with thickness ∆x, at a depth x is A(x)∆x, where A(x) is the cross-sectional
area of the slice;

(3) the weight of this slice is therefore ρA(x)∆x, where ρ is the density of water;
(4) the distance h which each slice must be raised is x plus the height of a spout, if there is one;

(5) the work done emptying the tank is the integral

∫ d

0

ρhA(x) dx.
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Example. A tank is the shape of a hemisphere of radius r metres (flat side to the top) and is filled with
water. Find the work required to empty the tank:

(a) by pumping all the water to the top of the tank;
(b) by pumping all the water out of a spout which rises 2 metres above the top of the tank.

Give your answers in terms of the density of water ρ.

Solution. (a) A slice of thickness ∆x at a depth of x metres below the top of the tank is a circle of radius
s, where s2 = r2 − x2, so the weight of this slice is ρπs2∆x = ρπ(r2 − x2)∆x. This slice must be raised
a distance x, so the work done is∫ r

0

ρxπ(r2 − x2) dx = πρ

∫ r

0

r2x− x3 dx = πρ

[
r2x2

2
− x4

4

]r
0

= πρ

(
r4

2
− r4

4

)
=
πρr4

4
.

(b) The weight of a slice at depth x is the same as in (a), this time the h = x+ 2, so the work done is∫ r

0

ρ(x+ 2)π(r2 − x2) dx = πρ

∫ r

0

r2x− x3 + 2r2 − 2x2 dx = πρ

[
r2x2

2
− x4

4
+ 2r2x− 2x3

3

]r
0

= πρ

(
r4

2
− r4

4
+ 2r3 − 2r3

3

)
= πρ

(
r4

4
+

4r3

3

)
.

�

It is important to remember the difference between mass and weight in the questions on work.

Average value of a function. Our notion of average value of a function generalises the notion of the mean
of n numbers y1, . . . , yn: if [a, b] can be divided in n subintervals of equal width, and f(x∗i ) = yi for any x∗i
in the ith subinterval, then the average value of f on [a, b] is the mean of the numbers y1, . . . , yn.

Definition. The average value of the function f on the interval [a, b] is

ave[a,b](f) = fave =
1

b− a

∫ b

a

f(x) dx.

The mean value theorem for integrals allows us to find an input c such that f(c) = ave[a,b](f).

Theorem. If f is continuous on [a, b] then there exists c ∈ [a, b] such that

f(c) = ave[a,b](f) =
1

b− a

∫ b

a

f(x) dx.

Example. (a) Find the average value of f(x) =
x2

(x3 + 3)2
on [−1, 1].

(b) Find the numbers b such that the average value of f(x) = 2 + 6x− 3x2 on the interval [0, b] is equal to 3.

Solution. (a) By definition

ave[−1,1](f) =
1

b− a

∫ b

a

f(x) dx =
1

1− (−1)

∫ 1

−1

x2

(x3 + 3)2
dx,

we evaluate this integral by substituting u = x3 + 3, so 1
3du = x2 dx and x = −1 =⇒ u = 2,

x = 1 =⇒ u = 4. So

ave[−1,1](f) =
1

2

∫ 1

−1

x2

(x3 + 3)2
dx =

1

2

∫ 4

2

1

3

1

u2
du =

1

6

[
− 1

u

]4
2

= −1

6

(
1

4
− 1

2

)
=

1

24
.

(b) By definition

ave[0,b](f) =
1

b− a

∫ b

a

f(x) dx =
1

b

∫ b

0

2 + 6x− 3x2 dx =
1

b

[
2x+ 3x2 − x3

]b
0

= 2 + 3b− b2,

so we must solve 3 = 2 + 3b − b2. By the quadratic formula b = 3±
√
5

2 ; both values of b are valid since
both are positive.

�
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Part 3: Integration techniques

Integration by parts. The integration by parts formula is the result of integrating the product rule for
derivatives. The formula is∫

f(x)g′(x) dx = f(x)g(x)−
∫
g(x)f ′(x) dx or

∫
u dv = uv −

∫
v du.

To integrate by parts one chooses a factor u = f(x) in the integrand and computes du = f ′(x) dx, the other
factor in the integrand is called dv = g′(x) dx and the antiderivative is v = g(x) (any antiderivative works).
The idea is that a difficult integral

∫
u dv can be found using a simpler integral

∫
v du, so we aim to choose

u and dv so that du is simpler than u and dv so that v is not more complicated than dv.
A useful rule of thumb is LIATE: choose u to be the type of function which appears as early on this list

as possible: Logarithm, Inverse trigonometric, Algebraic (polynomial), Trigonometric, Exponential.
One may need to use other techniques, such as substitution, in combination with integration by parts.

Example. Evaluate the integrals.

(a)

∫
x sec2(x) dx

(b)

∫ √
x ln(x) dx

(c)

∫
t2 sin(t) dt

(d)

∫
tan−1(2y) dy

Solution. (a) Let u = x and dv = sec2(x) dx, so du = dx and v = tan(x), so∫
x sec2(x) dx = x tan(x)−

∫
tan(x) dx = x tan(x)− ln | sec(x)|+ c

(the integral of tan(x) is one of the ones that should be remembered, but it can be found by writing

tan(x) = sin(x)
cos(x) and substituting u = cos(x)).

(b) Let u = ln(x) and dv =
√
x dx, so du = 1

x dx and v = 2
3x

3/2. Then∫ √
x ln(x) dx =

2

3
x3/2 ln(x)− 2

3

∫ √
x dx =

2

3
x3/2 ln(x)− 4

9
x3/2 + c.

(c) Let u = t2 and dv = sin(t) dt, so du = 2t dt and v = − cos(t) dt. Therefore∫
t2 sin(t) dt = −t2 cos(t) +

1

2

∫
t cos(t) dt.

To calculate the second integral use integration by parts again with u1 = t and dv1 = cos(t) dt, so
du1 = dt and v1 = sin(t). Therefore∫

t2 sin(t) dt = −t2 cos(t) +
1

2

(
t sin(t)−

∫
sin(t) dt

)
= −t2 cos(t) +

1

2
t sin(t) +

1

2
cos(t) + c.

(d) Let u = tan−1(2y) and dv = dy, so du = 2
1+4y2 dy and v = y. Therefore∫

tan−1(2y) dy = y tan−1(2y)−
∫

2y

1 + 4y2
dy.

The second integral can be found by substituting s = 1 + 4y2, so ds = 8y dy; hence∫
tan−1(2y) dy = y tan−1(2y)− 1

4

∫
1

s
ds = y tan−1(2y)− 1

4
ln |s|+ c = y tan−1(2y)− 1

4
ln(1 + 4y2) + c.

�

The formula for calculating a definite integral by parts is∫ b

a

f(x)g′(x) dx = [f(x)g(x)]
b
a −

∫ b

a

g(x)f ′(x) dx.



12 ANDREW MCKEE

Example. Use the method of cylindrical shells to calculate the volume of the solid formed by rotating the
region between the curves y = e−x, y = 0, x = −1 and x = 0 about the line x = 1.

Solution. The radius of a shell is 1− x and the height of a shell is e−x. Therefore the volume is

V =

∫ 0

−1
2π(1− x)e−x dx = 2π

[
−e−x(1− x)

]0
−1 − 2π

∫ 0

−1
e−x dx = 2π

[
−e−x(1− x)

]0
−1 − 2π

[
−e−x

]0
−1

= 2π
[
xe−x

]0
−1 = 2πe.

We used integration by parts with u = 1− x and dv = e−x dx, so du = −dx and v = −e−x. �

Integration by parts may be helpful to calculate the integrals of certain familiar functions, by taking
du = dx. For example, to find

∫
ln(x) dx let u = ln(x) and dv = dx, so du = 1

x dx and v = x. Then∫
ln(x) dx = x ln(x)−

∫
x

x
dx = x ln(x)− x+ c.

Occasionally integration by parts is useful when neither factor of the integrand becomes simpler when
differentiating, for example

∫
ex sin(x) dx; in these cases applying integration by parts (maybe several times)

results in an equation which can be solved for the required integral.

Trigonometric integrals. It is possible to calculate the integrals of many combinations of trigonometric
functions using integration by substitution or integration by parts together with clever use of trigonometric
identities.

The most important of the trigonometric identities are:
(1)
sin2(x) + cos2(x) = 1, sin(x+y) = sin(x) cos(y) + cos(x) sin(y), cos(x+y) = cos(x) cos(y)− sin(x) sin(y),

since all the identities used in this section can be deduced from these three. Dividing the first identity by
sin2(x) and cos2(x) respectively gives

1 + cot2(x) = csc2(x), and tan2(x) + 1 = sec2(x).

Replacing y by −y in the second and third identities of (1), and using that sin is an odd function and cos is
an even function, gives

sin(x− y) = sin(x) cos(y)− cos(x) sin(y) and cos(x− y) = cos(x) cos(y) + sin(x) sin(y).

Adding and subtracting the pairs of identities above which both contain a sin(x) cos(y), cos(x) cos(y), or
sin(x) sin(y) term we obtain

sin(x) cos(y) =
1

2
(sin(x+ y) + sin(x− y)) , cos(x) cos(y) =

1

2
(cos(x+ y) + cos(x− y)) ,

and

sin(x) sin(y) =
1

2
(cos(x− y)− cos(x+ y)) .

Taking y = x in the second and third identities of (1) gives the double-angle identities

sin(2x) = 2 sin(x) cos(x), and cos(2x) = cos2(x)− sin2(x).

The expression for cos(2x) can be rearranged using sin2(x) + cos2(x) = 1 to get the half-angle identities

cos2(x) =
1

2
(1 + cos(2x)) , and sin2(x) =

1

2
(1− cos(2x)) .

It is probably easier to derive these identities from the basic ones given in (1) than to learn all of them.
They will become familiar through frequent use.

The key thing to realise is that we can evaluate integrals such as
∫

sin(x) dx and
∫

cos(x) dx (and therefore∫
sin(kx) dx and

∫
cos(kx) dx), but we cannot evaluate

∫
sinn(x) dx or

∫
cosm(x) dx directly — it is almost

impossible to find an antiderivative for the integrand by trial and error, and substituting u = sin(x) or
u = cos(x) does not work (except in rare cases) because a new trigonometric function is introduced by
du. These substitutions do work on the integrals

∫
sinn(x) cos(x) dx or

∫
cosm(x) sin(x) dx. There are

no substitutions that work on integrals of the form
∫

sin2n(x) cos2m(x) dx — even if we use the identity

sin2(x) + cos2(x) = 1 we will not be left with an odd power of sin or cos to use in du. For integrals involving
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sin and cos we aim to use trigonometric identities to write them in terms of the two above forms which can
be integrated.

Example. Evaluate the integrals.

(a)

∫ π/2

0

sin5(2x) cos4(2x) dx

(b)

∫ π

0

sin2(t) cos4(t) dt

(c)

∫
x sin3(x) dx

(d)

∫
tan2(x) cos3(x) dx

(e)

∫
sin2(3t) cos2(2t) dt

Solution. (a) We leave only one factor of sin(2x) and convert the rest to cos, then substitute u = cos(2x),
so du = − 1

2 sin(2x) dx, and x = 0 =⇒ u = 1, x = π/2 =⇒ u = −1. So

∫ π/2

0

sin5(2x) cos4(2x) dx =

∫ π/2

0

(1− cos2(2x))2 cos4(2x) sin(2x) dx =

∫ −1
1

(1− u2)u4(−2du)

= 2

∫ 1

−1
u4 − u6 du = 2

[
u5

5
− u7

7

]1
−1

= 2

((
1

5
− 1

7

)
−
(
−1

5
+

1

7

))
=

8

35
.

(b) We use the identity for sin(t) cos(t), then the half-angle identities (alternatively one could begin with
the half-angle identities, but this seems to be more difficult). We get∫ π

0

sin2(t) cos4(t) dt =

∫ π

0

1

4
sin2(2t) cos2(t) dt =

1

4

∫ π

0

1

2
(1− cos(4t))

1

2
(1 + cos(2t)) dt

=
1

16

∫ π

0

1 + cos(2t)− cos(4t)− cos(4t) cos(2t) dt

=
1

16

∫ π

0

1 + cos(2t)− cos(4t)− 1

2
(cos(6t) + cos(2t)) dt

=
1

16

∫
1 +

1

2
cos(2t)− cos(4t)− 1

2
cos(6t) dt

=
1

16

[
t+

1

4
sin(2t)− 1

4
sin(4t)− 1

12
sin(6t)

]π
0

=
1

16
((π + 0− 0− 0)− (0 + 0− 0− 0)) =

π

16
.

(c) This looks like an integration by parts question, so choose u = x and dv = sin3(x) dx. Then du = dx; to
calculate v:∫

sin3(x) dx =

∫
(1− cos2(x)) sin(x) dx =

∫
(1− t2)(−dt) =

t3

3
− t+ c =

cos3(x)

3
− cos(x) + c1,

using the substitution t = cos(x) (u is already in use). Now let us calculate the integral in question:∫
x sin3(x) dx = x

(
cos3(x)

3
− cos(x)

)
−
∫

cos3(x)

3
− cos(x) dx.

(Remember that v can be any antiderivative of dv, so I have taken c1 = 0.) We need to use another
trigonometric identity to calculate the integral of the term involving cos3(x), similar to how we found v
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from dv write cos3(x) = (1− sin2(x)) cos(x) and substitute s = sin(x), so ds = cos(x) dx. Then∫
x sin3(x) dx = x

(
cos3(x)

3
− cos(x)

)
−
∫

cos3(x)

3
− cos(x) dx

= x

(
cos3(x)

3
− cos(x)

)
− 1

3

∫
1− s2 ds+ sin(x)

= x

(
cos3(x)

3
− cos(x)

)
− 1

3

(
s− s3

3

)
+ c+ sin(x)

=
1

3
x cos3(x)− x cos(x)− 1

3
sin(x) +

1

9
sin3(x) + sin(x) + c

=
1

3
x cos3(x)− x cos(x) +

2

3
sin(x) +

1

9
sin3(x) + c.

(d) We have∫
tan2(x) cos3(x) dx =

∫
sin2(x)

cos2(x)
cos3(x) dx =

∫
sin2(x) cos(x) dx =

∫
u2 du =

u3

3
+ c =

sin3(x)

3
+ c,

using the substitution u = sin(x), so du = cos(x) dx.
(e) Since the variables of sin and cos are not equal we cannot use the identity involving sin(x) cos(x); instead

we first use the identity involving sin(x) cos(y), then several other identities to make sure each term is
easy to integrate:∫

sin2(3t) cos2(2t) dt =

∫
1

4
(sin(5t) + sin(t))

2
dt =

1

4

∫
sin2(5t) + 2 sin(5t) sin(t) + sin2(t) dt

=
1

4

∫
1

2
(1− cos(10t)) + (cos(t)− cos(6t)) +

1

2
(1− cos(2t)) dt

=
1

4

∫
1− 1

2
cos(10t) + cos(t)− cos(6t)− 1

2
cos(2t) dt

=
1

4

(
t− 1

20
sin(10t) + sin(t)− 1

6
sin(6t)− 1

4
sin(2t)

)
+ c.

�

To calculate integrals such as
∫

tanm(x) secn(x) dx we can often use a similar idea as for
∫

sinm(x) cosn(x) dx
when m or n is odd: save a factor of sec2(x) and use tan2(x) + 1 = sec2(x) to express all other factors in
terms of tan(x), then substitute u = tan(x) so du = sec2(x) dx; alternatively, save a factor of sec(x) tan(x)
and use tan2(x) + 1 = sec2(x) to express all other factors in terms of sec(x), then substitute u = sec(x) so
du = sec(x) tan(x) dx.

A similar idea also works for certain integrals of the form
∫

cscm(x) cotn(x) dx: save a factor csc2(x) and
use 1 + cot2(x) = csc2(x) to express all other factors in terms of cot(x), then substitute u = cot(x), so
du = csc2(x) dx; alternatively, save a factor csc(x) cot(x) and use 1 + cot2(x) = csc2(x) to express all other
factors in terms of csc(x), then substitute u = csc(x), so −du = csc(x) cot(x) dx.

Example. (a)

∫
sec4(x) tan3(x) dx

(b)

∫
tan5(θ) sec3(θ) dθ

(c)

∫
cot5(x) csc3(x) dx

(d)

∫
cot3(x) dx

Solution. (a) Let u = tan(x), so du = sec2(x) dx, so∫
sec4(x) tan3(x) dx =

∫
sec2(x) tan3(x) sec2(x) dx =

∫
(tan2(x) + 1) tan3(x) sec2(x) dx =

∫
u5 + u3 du

=
u6

6
+
u4

4
+ c =

1

6
tan6(x) +

1

4
tan4(x) + c.
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(b) This time, since the powers are odd, take u = sec(θ) so du = sec(θ) tan(θ) dθ. The remaining power of
tan(θ) is even, so we can use the identity tan2(θ) + 1 = sec2(θ):∫

tan5(θ) sec3(θ) dθ =

∫
tan4(θ) sec3(θ) sec(θ) tan(θ) dθ =

∫
(sec2(θ)− 1)2 sec2(θ) sec(θ) tan(θ) dθ

=

∫
(u2 − 1)2u2 du =

∫
u6 − 2u4 + u2 du =

u7

7
− 2u5

5
+
u3

3
+ c

=
1

7
sec7(θ)− 2

5
sec5(θ) +

1

3
sec3(θ) + c.

(c) We save a factor of csc(x) cot(x) and write the rest of the integrand in terms of csc(x) using the identity
1 + cot2(x) = csc2(x), then substitute u = csc(x), so du = − csc(x) cot(x) dx:∫

cot5(x) csc3(x) dx =

∫
cot4(x) csc2(x) csc(x) cot(x) dx =

∫
(csc2(x)− 1)2 csc2(x)csc(x) cot(x) dx

= −
∫

(u2 − 1)2u2 du = −
∫
u6 − 2u4 + u2 du = −u

7

7
+

2u5

5
− u3

3
+ c

= −1

7
csc7(x) +

2

5
csc5(x)− 1

3
csc3(x) + c.

(d) The identity 1+cot2(x) = csc2(x) can be used to rewrite this integral in a way which allows substitution:∫
cot3(x) dx =

∫
cot(x)(csc2(x)− 1) dx =

∫
cot(x) csc2(x)− cot(x) dx.

The integral of cot(x) is known (it can easily be found by writing cot(x) = cos(x)
sin(x) and substituting

u = sin(x)); since the derivative of cot(x) is − csc2(x) the substitution v = cot(x), so dv = − csc2(x) dx,
gives∫

cot3(x) dx =

∫
cot(x) csc2(x)− cot(x) dx =

∫
−v dv +

∫
cot(x) dx = −1

2
v2 − ln | sin(x)|+ c

= −1

2
cot2(x)− ln | sin(x)|+ c.

�

Occasionally none of the above ideas will work — no trigonometric identities can be found to put the
integrand in a form for which a substitution will work. In this case we must resort to integration by parts,
algebraic tricks, or some other use of trigonometric identities.

Example. (a)

∫
sec(x) dx

(b)

∫
csc3(x) dx

(c)

∫
tan2(x) sec(x) dx

Solution. (a) Notice that 1 = sec(x)+tan(x)
sec(x)+tan(x) , so∫

sec(x) dx =

∫
sec(x)

sec(x) + tan(x)

sec(x) + tan(x)
dx =

∫
sec2(x) + sec(x) tan(x)

sec(x) + tan(x)
dx

=

∫
1

u
du = ln |u|+ c = ln | sec(x) + tan(x)|+ c,

using the substitution u = sec(x) + tan(x), so du = sec2(x) + sec(x) tan(x) dx. (Note: a very similar
trick works to calculate

∫
csc(x) dx; check you understood this example by calculating

∫
csc(x) dx.)

(b) A bit of trial and error should convince you that no trigonometric identity will help here. We use
integration by parts with u = csc(x) and dv = csc2(x) dx, so du = − csc(x) cot(x) dx and v = − cot(x).



16 ANDREW MCKEE

Then∫
csc3(x) dx = − csc(x) cot(x)−

∫
csc(x) cot2(x) dx = − csc(x) cot(x)−

∫
csc(x)(csc2(x)− 1) dx

= − csc(x) cot(x) +

∫
csc(x) dx−

∫
csc3(x) dx

= − csc(x) cot(x) + ln | csc(x)− cot(x)| −
∫

csc3(x) dx

(the technique to find the integral of csc(x) is the same as (a)). This identity can be solved for∫
csc3(x) dx, giving∫

csc3(x) dx = −1

2
csc(x) cot(x) +

1

2
ln | csc(x)− cot(x)|+ c.

(c) Using the identity 1 + tan2(x) = sec2(x) we get∫
tan2(x) sec(x) dx =

∫
sec3(x) dx−

∫
sec(x) dx =

∫
sec3(x) dx− ln | sec(x) + tan(x)|+ c.

The integral
∫

sec3(x) dx is very similar to the one in (b): use parts with u = sec(x) and dv = sec2(x) dx,
so du = sec(x) tan(x) dx and v = tan(x); therefore∫

sec3(x) dx = sec(x) tan(x)−
∫

sec(x) tan2(x) dx = sec(x) tan(x)−
∫

sec(x)(sec2(x)− 1) dx

= sec(x) tan(x) +

∫
sec(x) dx−

∫
sec3(x) dx

= sec(x) tan(x) + ln | sec(x) + tan(x)| −
∫

sec3(x) dx.

Solving this identity for
∫

sec3(x) dx, gives∫
sec3(x) dx =

1

2
sec(x) tan(x) +

1

2
ln | sec(x) + tan(x)|+ c.

Therefore∫
tan2(x) sec(x) dx =

∫
sec3(x) dx− ln | sec(x) + tan(x)|+ c =

1

2
sec(x) tan(x)− 1

2
ln | sec(x) + tan(x)|+ c.

�

Integration by trigonometric substitution. Occasionally an integral
∫
f(x) dx can be calculated by

making a substitution x = g(θ) (this is different to the normal integration by substitution technique where
we substitute u = g(x)); this kind of substitution is called an inverse substitution. If g is a trigonometric
function then such a substitution allows us to take advantage of trigonometric identities to simplify the
integrand.

The possible substitutions are:√
a2 − x2 substitute x = a sin(θ) with −π2 ≤ θ ≤

π
2 use the identity 1− sin2(θ) = cos2(θ)√

a2 + x2 substitute x = a tan(θ) with −π2 < θ < π
2 use the identity 1 + tan2(θ) = sec2(θ)√

x2 − a2 substitute x = a sec(θ) with 0 ≤ θ < π
2 use the identity sec2(θ)− 1 = tan2(θ).

The range of values for θ are chosen so that the trigonometric function is invertible, and ensure that the
absolute value can be removed when simplifying the square root.

The above substitutions transform integrals involving the square root expressions into integrals involving
trigonometric functions and powers of θ. The outcome of the integration will be a function of θ, which should
be converted back to a function of x for the final answer. Suppose we made the substitution x = a sin(θ)
(the cases of sec or tan can be handled similarly), then θ = sin−1(x/a). If the result of the integration is
another trigonometric function, say cot(θ), then by drawing a right-angled triangle and labelling one of the
angles θ we can express cot(θ) in terms of x: our substitution was sin(θ) = x

a , since we know sin(θ) = opp
hyp

label the side opposite θ as x and the hypotenuse as a. The adjacent side of the triangle is then
√
a2 − x2

(by Pythagoras’s theorem), and the expression for cot(θ) = adj
opp is x√

a2−x2
.
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Example. (a)

∫ √2/2

0

x2√
1− x2

dx

(b)

∫
1

x3
√
x2 − 1

dx

(c)

∫
1

x
√

4x2 + 1
dx

(d)

∫
x2

(4− x2)3/2
dx

Solution. (a) Let x = sin(θ), so dx = cos(θ) dθ and x = 0 =⇒ θ = 0, x =
√

2/2 =⇒ θ = π/4. Also√
1− x2 =

√
1− sin2(θ) =

√
cos2(θ) = | cos(θ)| = cos(θ),

the last equality because sin(θ) ≥ 0 for 0 ≤ θ ≤ π/4. Hence∫ √2/2

0

x2√
1− x2

dx =

∫ π/4

0

sin2(θ)

cos(θ)
cos(θ) dθ =

∫ π/4

0

1

2
(1− cos(2θ)) dθ =

1

2

[
θ − 1

2
sin(2θ)

]π/4
0

=
1

2

((
π

4
− 1

2

)
− 0

)
=
π

8
− 1

4
.

Note that the trigonometric substitution resulted in an integral which needed a trigonometric identity
to compute.

(b) Let x = sec(θ) for 0 ≤ θ ≤ π/2. Then dx = sec(θ) tan(θ) dθ and√
x2 − 1 =

√
sec2(θ)− 1 =

√
tan2(θ) = | tan(θ)| = tan(θ),

the last equality resulting from our choice of possible values for θ. Hence∫
1

x3
√
x2 − 1

dx =

∫
sec(θ) tan(θ)

sec3(θ) tan(θ)
dθ =

∫
cos2(θ) dθ =

∫
1

2
(1 + cos(2θ)) dθ

=
1

2
θ +

1

4
sin(2θ) + c =

1

2
θ +

1

2
sin(θ) cos(θ) + c.

We need to write the answer in terms of x, so we used the identity in the last equality so that all the
quantities can be found from a right-angled triangle with hypotenuse x, adjacent 1 (since x

1 = sec(θ) =
hyp
adj ), so the opposite side is

√
x2 − 1. Hence cos(θ) = 1

x and sin(θ) =
√
x2−1
x , and∫

1

x3
√
x2 − 1

dx =
1

2
θ +

1

2
sin(θ) cos(θ) + c =

1

2
sec−1(x) +

1

2

√
x2 − 1

x2
+ c.

(c) Let 2x = tan(θ), −π2 < θ < π
2 , so x = 1

2 tan(θ), dx = 1
2 sec2(θ) dθ and√

4x2 + 1 =
√

tan2(θ) + 1 = | sec(θ)| = sec(θ).

Then∫
1

x
√

4x2 + 1
dx =

∫ 1
2 sec2(θ)

1
2 tan(θ) sec(θ)

dθ =

∫
sec(θ)

tan(θ)
dθ =

∫
csc(θ) dθ = ln | csc(θ)− cot(θ)|+ c.

Now since 2x
1 = tan(θ) = opp

adj the hypotenuse of the corresponding triangle has length
√

4x2 + 1, so

csc(θ) = hyp
opp =

√
4x2+1
2x and csc(θ) = adj

opp = 1
2x . Hence∫

1

x
√

4x2 + 1
dx = ln | csc(θ)− cot(θ)|+ c = ln

∣∣∣∣∣
√

4x2 + 1

2x
− 1

2x

∣∣∣∣∣+ c.
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(d) The denominator of the integrand is
√

4− x23, which suggest we substitute x = 2 sin(θ), −π/2 ≤ θ ≤
π/2, so dx = 2 cos(θ) and

√
4− x23 = 8 cos3(θ), since sin(θ) is positive for the given range of θ. Hence∫

x2

(4− x2)3/2
dx =

∫
4 sin2(θ)

8 cos3(θ)
2 cos(θ) dθ =

∫
tan2(θ) dθ =

∫
sec2(θ)− 1 dθ

= tan(θ)− θ + c =
x√

4− x2
− sin−1

(x
2

)
+ c.

The expression for tan(θ) arises from x
2 = sin(θ) = opp

hyp , so the adjacent side is
√

4− x2.

�

Be aware that some integrals, such as
∫
x
√

4 + x2 dx, can be solved by trigonometric substitution, but

are more easily solved by a normal substitution, in this case u = 4 + x2 so 1
2du = x dx.

Integration by partial fractions. A rational function is the quotient of two polynomial functions: P (x)
Q(x) .

Some rational functions can be integrated by substitution (if P (x) is a scalar multiple of Q′(x)), but most
of the time we need to use algebra to put the integrand in a form which is easier to integrate.

The first thing to check is that the degree of P (x) (the highest power of x which appears) is less than the

degree of Q(x); if this is not the case then one must use polynomial division to write P (x)
Q(x) = S(x) + R(x)

Q(x) ,

where S is a polynomial (and therefore easy to integrate) and the degree of R(x) is less than the degree of
Q(x). A useful trick is

x

x+ q
=

(q − q) + x

x+ q
=

(x+ q)− q
x+ q

=
x+ q

x+ q
+
−q
x+ q

= 1− q

x+ q
,

which is easier than polynomial division and often puts the rational function in the form we need.

Now we focus on integrating P (x)
Q(x) and assume that the degree of P (x) is less than the degree of Q(x).

There are four cases to consider:

(a) all factors of Q(x) are linear and distinct;
(b) all factors of Q(x) are linear, but some appear more than once;
(c) at least one factor of Q(x) is irreducible and quadratic, but none of the quadratic factors are repeated;
(d) Q(x) has at least one repeated irreducible quadratic factor.

A linear factor has the form ax + b, while an irreducible quadratic factor has the form ax2 + bx + c with
b2 − 4ac < 0.

Case (a): Q(x) = (a1x+ b1)(a2x+ b2) · · · (anx+ bn), each bracket is different. Then

P (x)

Q(x)
=

A1

a1x+ b1
+

A2

a2x+ b2
+ · · ·+ An

anx+ bn
,

and the integral of each term on the right side is a logarithmic function:∫
Ai

aix+ bi
dx =

Ai
ai

ln |aix+ bi|+ c,

using the substitution u = aix+ bi, so 1
ai
du = dx.

Case (b): Q(x) = (a1x+b1)k1(a2x+b2)k2 · · · (anx+bn)kn , where some of the exponents ki may be 2, 3, ....
Then

P (x)

Q(x)
=

n∑
i=1

Xi,

and

Xi =
A1

aix+ bi
+

A2

(aix+ bi)2
+ · · ·+ Aki

(aix+ bi)ki
.

For example, the partial fraction decomposition for x2+1
x3(2x+1)(x−1)2 is

x2 + 1

x3(x+ 1)(x− 1)2
=
A1

x
+
A2

x2
+
A3

x3︸ ︷︷ ︸
X1

+
B1

2x+ 1︸ ︷︷ ︸
X2

+
C1

x− 1
+

C2

(x− 1)2︸ ︷︷ ︸
X3

.
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The integral of each term is either a logarithmic function (as in case (a)) or a power function∫
Ai

(aix+ bi)k
dx =

∫
Ai(aix+ bi)

−k dx =
Ai

ai(−k + 1)
(aix+ bi)

−k+1 + c, k 6= 1,

using the substitution u = aix+ bi, so 1
ai
du = dx, and the rule for integrating power functions.

Case (c): Q(x) = (a1x+ b1)k1 · · · (anx+ bn)kn(c1x
2 + d1x+ e1) · · · (cmx2 + dmx+ em), where some of the

exponents ki may be 2, 3, ... and the quadratic factors are irreducible and distinct. Then

P (x)

Q(x)
=

n∑
i=1

Xi +
B1x+ C1

c1x2 + d1x+ e1
+ · · ·+ Bmx+ Cm

cmx2 + dmx+ em
,

where the Xi are as in case (b). For example, the partial fraction decomposition for x2+2
x3(x−1)(x2+1)(x2+x+1) is

x2 + 2

x3(x− 1)(x2 + 1)(x2 + x+ 1)
=
A1

x
+
A2

x2
+
A3

x3︸ ︷︷ ︸
X1

+
B1

x− 1︸ ︷︷ ︸
X2

+
C1x+D1

x2 + 1
+
C2x+D2

x2 + x+ 1
.

The integral of a term involving a quadratic factor is found by completing the square in the denominator,
rearranging and using substitutions:∫

Cx+D

ax2 + bx+ c
dx =

∫
Cx+D

(x+ r)2 + s2
dx =

∫
Eu+ F

u2 + s2
du =

∫
Eu

u2 + s2
du+

∫
F

u2 + s2
du.

The first integral is a normal substitution, while the second is found by substituting u = s tan(θ), so
du = s sec2(θ) dθ and∫

F

u2 + s2
du =

∫
s sec2(θ)

s2(tan2(θ) + 1)
dθ =

∫
s sec2(θ)

s2 sec2(θ)
dθ =

∫
1

s
dθ =

θ

s
+ c =

1

s
tan−1

(u
s

)
+ c.

Case (d): Q(x) = (a1x+ b1)k1 · · · (anx+ bn)kn(c1x
2 + d1x+ e1)l1 · · · (cmx2 + dmx+ em)lm , where some of

the exponents ki and lj may be 2, 3, ... and the quadratic factors are irreducible. Then

P (x)

Q(x)
=

n∑
i=1

Xi +

m∑
j=1

Yj ,

where the Xi are as in case (b) and Yj are given by

Yj =
A1x+B1

ajx2 + bjx+ cj
+

A2x+B2

(ajx2 + bjx+ cj)2
+ · · ·+

Aljx+Blj
(ajx2 + bjx+ cj)lj

.

For example, the partial fraction decomposition for x2+2
x3(x−1)(x2+1)(x2+x+1)2 is

x2 + 2

x3(x− 1)(x2 + 1)(x2 + x+ 1)2
=
A1

x
+
A2

x2
+
A3

x3︸ ︷︷ ︸
X1

+
B1

x− 1︸ ︷︷ ︸
X2

+
C1x+D1

x2 + 1︸ ︷︷ ︸
Y1

+
E1x+ F1

x2 + x+ 1
+

E2x+ F2

(x2 + x+ 1)2︸ ︷︷ ︸
Y2

.

The integral of each of the terms in the partial fraction decomposition can be found by a substitution or a
trigonometric substitution.

Once the partial fraction decomposition has been determined one needs to find the value of the constants
involved (the capital letters). The first step is to use algebra to remove the fractions, multiplying the equation
given by the partial fraction decomposition by Q(x). Then one deduces simultaneous equations involving
the constants from this equation by plugging in values, or by multiplying everything out and equating the
coefficients of each power of x.

Example. (a)

∫
sin2(x) cos(x)

sin2(x) + sin(x)
dx

(b)

∫ 2

1

x3 + 4x2 + x− 1

x3 + x2
dx

(c)

∫
x3 − 2x2 + 2x− 5

x4 + 4x2 + 3
dx
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(d)

∫
x3 + 6x− 2

x4 + 6x2
dx

Solution. (a) Substitute u = sin(x), so du = cos(x) dx, then∫
sin2(x) cos(x)

sin2(x) + sin(x)
dx =

∫
u2

u2 + u
du =

∫
u

u+ 1
du =

∫
1− 1

u+ 1
du = u− ln |u+ 1|+ c

= sin(x)− ln | sin(x) + 1|+ c.

The third equality is the trick mentioned above, so that the rational function has the degree of the
denominator larger than the degree of the numerator.

(b) The numerator and denominator have the same degree, so we use polynomial division first, which gives

x3 + 4x2 + x− 1

x3 + x2
= 1 +

3x2 + x− 1

x3 + x2
= 1 +

3x2 + x− 1

x2(x+ 1)
.

The partial fraction decomposition of the rational function is

3x2 + x− 1

x2(x+ 1)
=
A

x
+
B

x2
+

C

x+ 1
⇐⇒ 3x2 + x− 1 = Ax(x+ 1) +B(x+ 1) + Cx2;

substituting x = 0 gives B = −1, x = −1 gives C = 1, and x = 1 then gives A = 2. Hence∫ 2

1

x3 + 4x2 + x− 1

x3 + x2
dx =

∫ 2

1

1 +
2

x
− 1

x2
+

1

x+ 1
dx =

[
x+ 2 ln |x|+ 1

x
+ ln |x+ 1|

]2
1

=
1

2
+ ln(2) + ln(3).

(c) Since x4 + 4x2 + 3 = (x2 + 1)(x2 + 3) the partial fraction decomposition is

x3 − 2x2 + 2x− 5

x4 + 4x2 + 3
=
Ax+B

x2 + 1
+
Cx+D

x2 + 3
⇐⇒ x3 − 2x2 + 2x− 5 = (Ax+B)(x2 + 3) + (Cx+D)(x2 + 1).

Solving the resulting system of equations gives A = 1/2, B = −3/2, C = 1/2, D = −1/2. Hence∫
x3 − 2x2 + 2x− 5

x4 + 4x2 + 3
dx =

∫ 1
2x−

3
2

x2 + 1
+

1
2x−

1
2

x2 + 3
dx =

∫ 1
2x

x2 + 1
−

3
2

x2 + 1
+

1
2x

x2 + 3
−

1
2

x2 + 3
dx

=
1

4
ln(x2 + 1)− 3

2
tan−1(x) +

1

4
ln(x2 + 3)− 1

2
√

3
tan−1

(
x√
3

)
+ c.

(The first and third terms used the substitution u = x2 + 1 and u = x2 + 3 respectively, while the second
and fourth terms use the formula given above which was found using a trigonometric substitution.)

(d) Since x4 + 6x2 = x2(x2 + 6) the partial fraction decomposition of the integrand is

x3 + 6x− 2

x4 + 6x2
=
A

x
+
B

x2
+
Cx+D

x2 + 6
⇐⇒ x3 + 6x− 2 = (A+ C)x3 + (B +D)x2 + 6Ax+ 6B

(I have omitted some algebra). The coefficients for each power of x give four simultaneous equations,
which solve to give A = 1, B = −1/3, C = 0, D = 1/3. Hence∫

x3 + 6x− 2

x4 + 6x2
dx =

∫
1

x
−

1
3

x2
+

1
3

x2 + 6
dx = ln |x|+ 1

3x
+

1

3
√

6
tan−1

(
x√
6

)
+ c.

�

Some integrals, such as (a) above, need a substitution before it is obvious to use partial fractions.

Summary of integration techniques. In an exam you are expected to choose an appropriate integration
technique for each question. It is not possible to give a general algorithm which can be followed to determine
an integration strategy, but the following guidelines may be helpful. To be able to follow these guidelines it
is important to know the integrals of familiar functions (the table at the beginning of Section 7.5, which is
reproduced below) so that you can recognise when an integrand is in a form which is easy to integrate.

(1) Simplify the integrand: move constant factors outside of the integrand, cancel out common factors,
try multiplying any products (it is easier to find

∫ √
x+ x3/2 dx than

∫ √
x(1 + x) dx), check if any

trigonometric identities will help.
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(2) Look for a substitution: if a composite function appears in the integrand then try making a substi-
tution; often this will make it clearer what the next step is, for example a substitution might turn
the integrand into a rational function which can be integrated using partial fractions. It is common
for a question to require one or more substitutions along with other techniques.

(3) Look for something familiar: if the integrand looks like a rational function this suggests partial

fractions; if the integrand contains a factor of
√
x2 + a2 or something similar you should recognise

this as requiring a trigonometric substitution (unless a normal substitution works); if the integrand
is a product of trigonometric functions then consider using trigonometric identities, particularly if
the functions involved are related to each others derivatives; if the integrand is a product of two
functions, but not suitable for substitution, then try integration by parts; remember LIATE.

(4) Try something else: if none of the above have given an answer then keep trying; perhaps one needs
to combine several of the above techniques, try using different trigonometric identities, a different
substitution, or integration by parts with different choices of u and dv (remember it sometimes helps
to choose dv = dx).

Above all, get as much practice as possible.
To make your work understandable it is important to mark clearly which integration technique you are

using.
Be aware that there are many continuous functions which cannot be integrated using the techniques

explained here. In fact every continuous function has an indefinite integral (FTC1 gives an expression for
the antiderivative), but for most continuous functions this integral cannot be expressed in terms of the
functions we have been working with. Some examples of integrals which cannot be expressed in terms of
elementary functions are∫

sin(x2) dx,

∫
1

ln(x)
dx,

∫
cos(ex) dx,

∫ √
x3 + 1 dx.

Approximate integration. It may not be possible to evaluate a definite integral
∫ b
a
f(x) dx using what

we have learned; for example, f may be a function with no elementary antiderivative, so we cannot use
FTC, or we may not have an expression for f which can be used, such as when f is a curve estimated from
experimental data. When these situations arise it is useful to be able to approximate a definite integral.

The most basic approximations come directly from our definition of a definite integral: the expressions

Ln =

n∑
i=1

f(xi−1)∆x and Rn =

n∑
i=1

f(xi)∆x, ∆x =
b− a
n

, xi = a+ i∆x,

are the left and right endpoint approximations to
∫ b
a
f(x) dx.

The average of the left and right endpoint approximations is the trapezoidal rule:∫ b

a

f(x) dx ≈ Tn =
∆x

2
(f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)) ,

where ∆x = b−a
n , xi = a + i∆x; this rule gets its name because the area under the graph on the interval

[xi−1, xi] is approximated by a trapezium with left side of length f(xi−1), right side of length f(xi), and
width ∆x.

If one takes the height of a rectangle approximating the area under the graph on the interval [xi−1, xi]
to be the height of the graph f(xi) at the midpoint of the interval xi = 1

2 (xi−1 + xi) (instead of the left or
right endpoints as in Ln and Rn) the approximation is called the midpoint rule:∫ b

a

f(x) dx ≈Mn = ∆x (f(x1) + f(x2) + f(x3) + · · ·+ f(xn−1) + f(xn)) ,

where ∆x = b−a
n , xi = a+ i∆x and xi = 1

2 (xi−1 + xi).
The trapezoidal and midpoint rules use straight lines to approximate a curve y = f(x), and therefore the

area under the curve. A more sophisticated way of approximating a curve is using parabolas: given three
points yi−1 = f(xi−1), yi = f(xi), yi+1 = f(xi+1) on a curve one can find numbers A,B,C such that the
curve y = Ax2 + Bx + C passes through the points yi−1, yi, yi+1, so the curve y = Ax2 + Bx + C should
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be a reasonable approximation of y = f(x) on the interval [xi−1, xi+1]. Splitting the region [a, b] in several
intervals, and applying this idea to each interval, results in another approximation called Simpson’s rule:∫ b

a

f(x) dx ≈ Sn =
∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + · · ·+ 2f(xn−2) + 4f(xn−1) + f(xn))

where n is even, ∆x = b−a
n and xi = a + i∆x. Note the pattern in the sum: the odd-numbered terms are

multiplied by 4, the first and last terms are multiplied by 1, all other even-numbered terms are multiplied
by 2.

Example. (a) Approximate

∫ π

−π
sin3(x) dx using the midpoint rule with n = 4.

(b) Approximate

∫ 1

0

x√
x2 + 1

dx using Simpson’s rule and the trapezoid rule with n = 4.

Solution. (a) Here ∆x = π/4 and xi = −π + iπ/4. The midpoint rule gives

M4 =
π

2

((
− 1√

2

)3

+

(
− 1√

2

)3

+

(
1√
2

)3

+

(
1√
2

)3
)

= 0.

This is an unusual example where the midpoint rule gives the exact answer, due to the symmetry of the
integrand.

(b) Here ∆x = 1/4 and xi = 0 + i/4. Simpson’s rule gives

S4 =
1

3(4)
(f(0) + 4f(0.25) + 2f(0.5) + 4f(0.75) + f(1)) =

1

12

(
0 +

16

17
+

4

5
+

48

25
+

1

2

)
≈ 0.34676.

The trapezoid rule gives

T4 =
1

2(4)
(f(0) + 4f(0.25) + 2f(0.5) + 4f(0.75) + f(1)) ≈ 0.52015.

�

When using the above approximations it may be useful to know the size of the error in the approximation.

The errors in each approximation to
∫ b
a
f(x) dx are:

ETn =

∫ b

a

f(x) dx− Tn, EMn
=

∫ b

a

f(x) dx−Mn, ESn =

∫ b

a

f(x) dx− Sn.

Careful study of each rule gives an expression for the largest possible magnitude of the error for a given n:

|ETn | ≤
KT (b− a)3

12n2
, |EMn

| ≤ KM (b− a)3

24n2
, |ESn | ≤

KS(b− a)5

180n4
,

where |f ′′(x)| ≤ KT , |f ′′(x)| ≤ KM , and |f (4)(x)| ≤ KS for a ≤ x ≤ b (KT and KM measure how far f is
from being a straight line). Notice that the maximum error of Mn is half of the maximum error in Tn, so
we expect that the midpoint rule is usually more accurate that the trapezoid rule, and that the maximum
error in Sn is smaller than the other rules, particularly when n is large.

Example. What is the largest possible error in an approximation to

∫ 1

0

x√
x2 + 1

dx using the trapezoidal

rule with n = 4? How large should n be to ensure the approximation using the midpoint rule is less than
1/1000?

Solution. Using the product rule we see that the second derivative of x√
x2+1

is 2x(x2−3)
(x2+1)3 ; we want to find

an upper bound for the absolute value of this expression when 0 ≤ x ≤ 1. Using Calculus I techniques the
numerator 2x(x2 − 3) is decreasing on [0, 1] and has a local minimum at x = 1; since the numerator is 0
when x = 0 we see that |2x(x2 − 3)| ≤ |2(1)(12 − 3)| = 4. Since the denominator of the second derivative is
always at least 1 we have shown that |f ′′(x)| ≤ 4 on [0, 1]. The largest possible error is

|ETn | ≤
KT (b− a)3

12n2
=

4(1− 0)3

12(42)
=

1

48
≈ 0.20833.
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This approximation would not be very accurate because the error has the same order of magnitude as the
approximate value.

Using the calculations above

1

1000
< |EMn | =⇒ 1

1000
<

4(13)

24n2
=⇒ n2 >

1000

6
≈ 166.67,

so we should take n >
√

167 ≈ 12.92, so n ≥ 13. �

L’Hospital’s rule. The techniques from Calculus I may not work to calculate certain limits of the form

limx→a
f(x)
g(x) (a can be a real number or ±∞) whenever limx→a f(x) = 0 = limx→a g(x) or both limits are

±∞ (when this happens limx→a
f(x)
g(x) is called an indeterminate form of type 0

0 or ∞∞ ).

L’Hospital’s rule. Suppose that f and g are differentiable functions and g′(x) 6= 0 on an open interval

containing a (except possibly at a; a = ±∞ and one-sided limits are also permitted). If limx→a
f(x)
g(x) is an

indeterminate form of type 0
0 or ∞∞ then

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)

if the limit on the right side exists, or is ±∞.

If the limit on the right side above is again an indeterminate form of type 0
0 or ∞∞ then it can be calculated

by applying l’Hospital’s rule a second time.
In Calculus I we saw that close to x = a the curves f(x) and g(x) are reasonably approximated by the

lines through f(a) and g(a) with slope f ′(a) and g′(a) respectively; l’Hospital’s rule states that the ratio
between these approximations is the same as the ratio between the original functions when we take the limit
as x goes to a.

In order to use l’Hospital’s rule effectively it is important to be able to recognise quickly determine the
value of limits. Here are a few important ones (do not try to learn them, instead make sure you understand
why these statements are true):

lim
x→∞

xp =∞ (p > 0), lim
x→∞

x−p = 0 (p > 0), lim
x→∞

ln(x) =∞, lim
x→∞

ax =

{
0 if 0 < a < 1

∞ if a > 1
.

The third limit will often be used with a = e.

Example. Calculate the following limits.

(a) lim
x→0

tan(3x)

sin(2x)

(b) lim
x→0

x2

1− cos(x)

(c) lim
x→∞

xn

ex
(n a positive integer)

(d) lim
x→∞

x sin
(π
x

)
Solution. (a) This limit is type 0

0 . Applying l’Hospital’s rule:

lim
x→0

tan(3x)

sin(2x)

H
= lim
x→0

3 sec2(3x)

2 cos(2x)
=

3(1)2

2(1)
=

3

2
.

(b) This limit is type 0
0 . Applying l’Hospital’s rule:

lim
x→0

x2

1− cos(x)

H
= lim
x→0

2x

sin(x)

H
= lim
x→0

2

cos(x)
= 2.

Note: we used l’Hospital’s rule to calculate limx→0
2x

sin(x) ; alternatively one can remember that we showed

limx→0
sin(x)
x = 0 when calculating the derivatives of trigonometric functions.
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(c) This limit is type ∞∞ . Applying l’Hospital’s rule gives

lim
x→∞

xn

ex
H
= lim
x→∞

nxn−1

ex
,

which is again type ∞∞ unless n − 1 = 0. If we apply l’Hospital’s rule n times the power of x in the
numerator will reduce to 0:

lim
x→∞

xn

ex
H
= lim
x→∞

nxn−1

ex
H
= lim
x→∞

n(n− 1)xn−2

ex
H
= · · · H= lim

x→∞

n!x1

ex
H
= lim
x→∞

n!x0

ex
= 0.

This example shows that as x→∞ the function ex becomes larger than xn, even if n is very large. This
rule of thumb can serve as a useful guide when computing limits, as well as in the next section.

(d) This does not appear to be in the correct form to apply l’Hospital’s rule, but if we let t = 1/x then
t→ 0 ⇐⇒ x→∞, and

lim
x→∞

x sin
(π
x

)
= lim
t→0

sin(πt)

t

H
= lim
t→0

π cos(πt)

1
= π.

The discussion of indeterminate products below gives another approach to this question.
�

To make your work understandable it is important to mark clearly where you use l’Hospital’s rule.
Certain other indeterminate limits can be put into a form to which l’Hospital’s rule applies by using

algebra.
If limx→a f(x) = 0 and limx→a g(x) =∞ then limx→a f(x)g(x) is called an indeterminate product of type

0 ·∞ (notice that 0 ·0 and ±∞·±∞ are not indeterminate products). This limit can be calculate by writing

lim
x→a

f(x)g(x) = lim
x→a

f(x)
1

g(x)

,

which is of type 0
0 and can be found by applying l’Hospital’s rule.

If limx→a f(x) = ∞ and limx→a g(x) = ∞ then limx→a f(x) − g(x) is called an indeterminate difference
of type ∞−∞ (notice that 0 − 0, ∞ +∞, and several others, are not indeterminate). This limit can be
calculated by forcing it to be an indeterminate product or quotient, for example by writing

lim
x→a

f(x)− g(x) = lim
x→a

f(x)

(
1− g(x)

f(x)

)
or bringing fractions to a common denominator, and applying l’Hospital’s rule.

The limit limx→a (f(x))
g(x)

gives rise to several indeterminate forms: types 00, ∞0 and 1∞ (other types
such as b∞ or b0 with b 6= 1, or ∞∞, are not indeterminate). These limits can be found by letting y =

(f(x))
g(x)

, so that limx→a ln(y) = limx→a g(x) ln(f(x)), calculating the limit of the indeterminate product
as above, then finding limx→a y using

lim
x→a

y = lim
x→a

eln(y) = elimx→a g(x) ln(f(x)).

Example. Calculate the following limits.

(a) lim
x→∞

√
xe−x/2

(b) lim
x→∞

(x− ln(x))

(c) lim
x→0+

(
1

x
− 1

tan−1(x)

)
(d) lim

x→∞
xe
−x

Solution. (a) Type ∞ · 0. Rearrange to type ∞∞ and apply l’Hospital’s rule:

lim
x→∞

√
xe−x/2 = lim

x→∞

√
x

ex/2
H
= lim
x→∞

1
2x
−1/2

1
2e
x/2

= lim
x→∞

1√
xex/2

= 0.
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(b) Type ∞−∞. Factoring gives limx→∞(x− ln(x)) = limx→∞ x
(

1− ln(x)
x

)
. By l’Hospital’s rule

lim
x→∞

ln(x)

x

H
= lim
x→∞

1/x

1
= 0,

so limx→∞(x− ln(x)) = limx→∞ x
(

1− ln(x)
x

)
=∞ as it is the product of a term with infinite limit and

a term with nonzero finite limit.
(c) Type ∞−∞. We bring to a common denominator and use l’Hospital’s rule twice:

lim
x→0+

(
1

x
− 1

tan−1(x)

)
= lim
x→0+

tan−1(x)− x
x tan−1(x)

H
= lim
x→0+

1
x2+1 − 1

x
x2+1 + tan−1(x)

= lim
x→0+

−x2

x+ (x2 + 1) tan−1(x)

H
= lim
x→0+

−2x

1 + 1 + 2x tan−1(x)
=

0

2 + 0
= 0.

(d) Let y = xe
−x

, so ln(y) = e−x ln(x) and by l’Hospital’s rule

lim
x→∞

e−x ln(x) = lim
x→∞

ln(x)

ex
H
= lim
x→∞

1/x

ex
= lim
x→∞

1

xex
= 0.

Hence

lim
x→∞

xe
−x

= lim
x→∞

eln(y) = e0 = 1.

�

Be aware that if the conditions for l’Hospital’s rule are not satisfied then attempting to apply the rule
may result in an incorrect limit. Do not confuse l’Hospital’s rule with the quotient rule for derivatives.

Finally, consider the limit limx→0
sin(x)
x ; l’Hospital’s rule tells us that this limit is equal to limx→0

cos(x)
1 = 1,

using that the derivative of sin(x) is cos(x). In Calculus I we proved this limit in order to show that
d
dx sin(x) = cos(x), so we cannot use l’Hospital’s rule to discover the value of this limit for the first time;
however it can be used if you forget the value of this limit.

Improper integrals. An improper integral can be thought of as calculating the area under a function,
where the region under the function extends infinitely far in either the vertical or horizontal direction. We
will see that it is possible for the area of such a region to be finite or infinite.

Definition. An improper integral of type 1 is an integral over an infinite interval; that is, one (or both) of
the limits of integration is infinite.

If
∫ t
a
f(x) dx exists for all t ≥ a then we define∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx,

provided the limit exists (i.e. the limit is finite).

If
∫ b
t
f(x) dx exists for all t ≤ b then we define∫ b

−∞
f(x) dx = lim

t→−∞

∫ b

t

f(x) dx,

provided the limit exists (i.e. the limit is finite).
The above improper integrals are called convergent if the limit involved exists and divergent if the limit

does not exist. If both
∫ a
−∞ f(x) dx and

∫∞
a
f(x) dx are convergent, then we define∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞
a

f(x) dx.

It can be shown that any real number a can be used to split the above integral.

Example. Decide if the improper integrals are divergent or convergent. If they are convergent find their
value.

(a)

∫ ∞
1

ln(x)

x4
dx
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(b)

∫ ∞
−∞

1

4x2 + 4x+ 5
dx

(c)

∫ ∞
1

1

xp
dx (p > 0)

Solution. (a) We use integration by parts with u = ln(x) and dv = 1
x4 dx to calculate the integral in the

definition:∫ ∞
1

ln(x)

x4
dx = lim

t→∞

∫ t

1

ln(x)

x4
dx = lim

t→∞

([
− ln(x)

3x3

]t
1

+

∫ t

1

1

3x4
dx

)
= lim
t→∞

([
− ln(x)

3x3

]t
1

+

[
− 1

9x3

]t
1

)

= lim
t→∞

(
− ln(t)

3t3
+

(
− 1

9t3
+

1

9

))
H
= lim
t→∞

(
− 1

9t3
+

(
− 1

9t3
+

1

9

))
=

1

9
.

Note the use of l’Hospital’s rule to calculate the limit of the first term.
(b) Let u = 2x+ 1, so du = 2dx, and∫ ∞

−∞

1

4x2 + 4x+ 5
dx =

1

2

∫ ∞
−∞

1

u2 + 4
du =

1

2

∫ 0

−∞

1

u2 + 4
du+

1

2

∫ ∞
0

1

u2 + 4
du

=
1

2
lim

t→−∞

∫ 0

t

1

u2 + 4
du+

1

2
lim
t→∞

∫ t

0

1

u2 + 4
du

=
1

2
lim

t→−∞

[
1

2
tan−1

(u
2

)]0
t

+
1

2
lim
t→∞

[
1

2
tan−1

(u
2

)]t
0

=
π

4
.

(c) When p = 1 we have∫ ∞
1

1

x
dx = lim

t→∞

∫ t

1

1

x
dx = lim

t→∞
[ln |x|]t1 = lim

t→∞
(ln(t)− ln(1)) =∞,

so the improper integral is divergent when p = 1. If p 6= 1 then∫ ∞
1

1

xp
dx = lim

t→∞

[
x−p+1

−p+ 1

]t
1

= lim
t→∞

1

1− p

(
1

tp−1
− 1

)
.

If p > 1 then 1
tp−1 → 0 as t→∞, so the improper integral converges; if p < 1 then 1

tp−1 →∞ as t→∞,

so the improper integral diverges. In summary,
∫∞
1

1
xp dx diverges when 0 < p ≤ 1 and converges to 1

p−1
when p > 1.

�

Improper integrals of type 1 correspond to the area of a region which extends infinitely in the horizontal
direction. The second type correspond to the area of a region which extends infinitely in the vertical direction,
which occurs when the integrand has an infinite discontinuity.

Definition. An improper integral of type 2 is an integral involving an integrand with an infinite discontinuity.
If f is continuous on [a, b) and is discontinuous at b then we define∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx,

provided the limit exists (i.e. the limit is finite).
If f is continuous on (a, b] and is discontinuous at a then we define∫ b

a

f(x) dx = lim
t→a+

∫ b

t

f(x) dx,

provided the limit exists (i.e. the limit is finite).

The improper integral
∫ b
a
f(x) dx is called convergent if the limit involved exists and divergent if the

limit does not exist. If f has a discontinuity at c, with a < c < b, and both
∫ c
a
f(x) dx and

∫ b
c
f(x) dx are

convergent, then we define ∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.
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Note that in the above definition the limit always approaches the endpoint of the interval from within the
interval.

Example. Decide if the improper integrals are divergent or convergent. If they are convergent find their
value.

(a)

∫ 1

0

1

2− 3x
dx

(b)

∫ 1

0

x− 1√
x
dx

(c)

∫ 1

0

1

xp
dx

Solution. (a) The integrand has an infinite discontinuity at x = 2/3. Using the definition∫ 2/3

0

1

2− 3x
dx = lim

t→ 2
3
−

∫ t

0

1

2− 3x
dx = lim

t→ 2
3
−

[
−1

3
ln |2− 3x|

]t
0

= lim
t→ 2

3
−

(ln |2− 3t| − ln(2)) =∞.

Since the left part of
∫ 1

0
1

2−3x dx diverges the integral in question diverges.

(b) The integrand has an infinite discontinuity at 0, so∫ 1

0

x− 1√
x
dx = lim

t→0+

∫ 1

t

x1/2 − x−1/2 dx = lim
t→0+

[
2

3
x3/2 − 2x1/2

]1
t

= −4

3
.

(c) Note that if p ≤ 0 the integral is not improper. When p = 1 the improper integral diverges, since∫ 1

0

1

x
dx = lim

t→0+

∫ 1

t

1

x
dx = lim

t→0+
[ln |x|]1t = lim

t→0+
(ln(1)− ln(t)) =∞.

When p 6= 1 we have, similarly to the calculation given above,∫ 1

0

1

xp
dx = lim

t→0+

∫ 1

t

1

xp
dx = lim

t→0+

1

1− p

(
1− 1

tp−1

)
.

If p > 1 then p− 1 > 0, so 1
tp−1 →∞ as t→ 0+ and the integral diverges. If 0 < p < 1 then p− 1 < 0,

so 1
tp−1 → 0 as t→ 0+, so the integral converges to 1

1−p . In summary,
∫ 1

0
1
xp dx diverges when p ≥ 1 and

converges to 1
1−p when 0 < p < 1.

�

If you are asked to calculate a definite integral you are expected to decide if the integral is improper or
not, and use the appropriate definition to check if any improper integral converges or diverges.

It may not be possible to calculate the exact value of an improper integral, but sometimes one can still
decide if an improper integral converges or diverges by comparing it with another improper integral which is
known to converge or diverge. Geometrically this corresponds to comparing an area which may or may not

be infinite with another area which is known to be finite or infinite. The integrals
∫ b
a

1
xp dx are often useful

for these comparisons.

Theorem. Suppose that f and g are continuous functions with f(x) ≥ g(x) ≥ 0 for x ≥ a.

(a) If
∫∞
a
f(x) dx is convergent then

∫∞
a
g(x) dx is convergent.

(b) If
∫∞
a
g(x) dx is divergent then

∫∞
a
f(x) dx is divergent.

A similar statement holds for improper integrals over the interval (−∞, b].
Now suppose f and g are continuous on [a, b) and discontinuous at b, and f(x) ≥ g(x) ≥ 0 for x ∈ [a, b).

(a) If
∫ b
a
f(x) dx is convergent then

∫ b
a
g(x) dx is convergent.

(b) If
∫ b
a
g(x) dx is divergent then

∫ b
a
f(x) dx is divergent.

A similar statement holds for improper integrals on [a, b] with a discontinuity at a.

Example. Use the comparison theorem to decide if the given integrals are convergent or divergent.

(a)

∫ ∞
1

2 + sin(x)√
x

dx
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(b)

∫ ∞
1

1√
1 + x4

dx

Solution. (a) Note that 2+sin(x)√
x
≥ 1√

x
for x ∈ [1,∞) (since −1 ≤ sin(x)). We know

∫∞
1

1
x1/2 dx diverges, so

the integral in question is divergent by the comparison theorem.
(b) Since 1 + x4 > x4 and

√
x is an increasing function we have 1√

1+x4
< 1√

x4
= 1

x2 for x ∈ [1,∞). The

improper integral
∫∞
1

1
x2 dx is convergent, so the integral in question is also convergent by the comparison

theorem.
�

Part 4: Further applications of integration

Arc length. The length of a straight line segment is given by the distance formula from Calculus I. If a
curve cannot be split into a number of straight lines then it is not immediately obvious how to define the
length of the curve. The length of a curve is defined by approximating the curve by a straight line on each
interval [xi−1, xi], adding the lengths of these lines, and taking the limit as the number of intervals goes to
infinity.

If f ′ is continuous on [a, b] then the length of the curve y = f(x) on the interval [a, b] is

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx.

It may be useful to have a function which expresses the distance from a point P (a, f(a)) on the curve
y = f(x) to any other point on the curve. The arc length function for the distance along the curve y = f(x)
from the point P (a, f(a)) to another point Q(x, f(x)) is

s(x) =

∫ x

a

√
1 +

(
dy

dx

)2

dx.

Example. (a) Find the length of the curve 12x = 4y3 +
3

y
, 1 ≤ y ≤ 3.

(b) Find the arc length function for the curve y = 4(x− 1)3/2 with starting point x = 1.

Solution. (a) Since x = 1
3y

3 + 1
4y we have

dx

dy
= y2 − 1

4y2
=⇒ 1 +

(
dx

dy

)2

= 1 + y4 − 1

2
+

1

16y4
=

(
y2 +

1

4y2

)2

.

Hence the length of the curve is

L =

∫ 3

1

√(
y2 +

1

4y2

)2

dy =

∫ 3

1

y2 +
1

4y2
dy =

[
y3

3
− 1

4y

]3
1

=

((
9− 1

12

)
−
(

1

3
− 1

4

))
=

53

6
.

Note that the first equality in evaluating the integral is only valid because y2 + 1
4y2 is positive on the

interval [1, 3].
(b) We have

dy

dx
= 6(x− 1)1/2 =⇒ 1 +

(
dy

dx

)2

= 1 + 36(x− 1) = 36x− 35.

Therefore the arc length function with starting point x = 1 is

s(x) =

∫ x

1

√
36t− 35 dt =

[
2

3
(36)(36t− 35)3/2

]x
1

= 24(36x− 35)3/2 − 24.

�
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Area of a surface of revolution. A surface of revolution is formed when a curve is rotated about an axis
(it is the boundary of the solid of revolution we considered earlier). If the curve is a straight line of length h,
parallel to the axis with distance r, then the surface of revolution is the surface area of a cylinder of radius
r and height h, which we know to have surface area 2πrh (cut the surface along the straight line and unfold
the surface into a rectangle with sides h and 2πr). If the curve is a straight line not parallel to the axis then
the area it generates is the surface area of (a frustum of) a cone. The surface area of a cone of base radius r
and slant height l can be found by cutting the cone from the apex to the base, flattening the cone into the
arc of a circle with radius l, arc length 2πr, central angle θ = 2πr

l , therefore area πrl (given by the formula
for sector area). The surface area of a frustum of a cone with slant height l and lower and upper radii r1
and r2 is 2πrl, where r = 1

2 (r1 + r2) is the average radius; this formula can be found by writing the surface
area of a frustum as the difference between surface areas of two cones.

To define the area generated by rotating any curve about an axis we break the curve in segments and
approximate the area generated by each segment as the surface are of a cylinder or (a frustum of) a cone.

Definition. If f(x) ≥ 0 for a ≤ x ≤ b and f ′ is continuous then the area of the surface obtained by rotating
the curve y = f(x) about the x-axis, between x = a and x = b, is

S =

∫ b

a

2πf(x)

√
1 +

(
dy

dx

)2

dx.

If the curve is given as x = g(y), c ≤ y ≤ d, then the surface formed by rotating the curve around the x-axis
is

S =

∫ d

c

2πy

√
1 +

(
dx

dy

)2

dy.

For rotation about the y-axis exchange the roles of x and y above.

The first of the above formulas for surface area generated by rotation about the x-axis is sometimes given

as S =
∫ b
a

2πy ds, where ds =

√
1 +

(
dy
dx

)2
dx is the differential coming from the derivative of the arc length

function.

Example. Find the area of the surface obtained by rotating the given curve about the axis.

(a) y = cos
(x

2

)
, 0 ≤ x ≤ π, about the x-axis.

(b) y =
1

3
x3/2, 0 ≤ x ≤ 12, about the y-axis.

Solution. (a) We have

dy

dx
= −1

2
sin
(x

2

)
=⇒ 1 +

(
dy

dx

)2

= 1 +
1

4
sin2

(x
2

)
.

To calculate the integral we first make the substitution u = sin
(
x
2

)
, then calculate the resulting integral

using the trigonometric substitution u = 2 tan(θ):

S =

∫ b

a

2πy

√
1 +

(
dy

dx

)2

dx = 2π

∫ π

0

cos
(x

2

)√
1 +

1

4
sin2

(x
2

)
dx = 2π

∫ 1

0

√
4 + u2 du

= 2π

∫ u=1

u=0

√
4 + 4 tan2(θ)2 sec2(θ) dθ = 8π

∫ u=1

u=0

sec3(θ) dθ

= 4π [sec(θ) tan(θ) + ln | sec(θ) + tan(θ)|]u=1
u=0 = 4π

[
u

2

√
u2 + 4

2
+ ln

(√
u2 + 4

2
+
u

2

)]1
0

= 4π

(√
5

4
+ ln

(√
5 + 1

2

)
− 0

)
= π
√

5 + 4π ln

(√
5 + 1

2

)
.

(The integral of sec3(θ) was computed above; I found it easier to write the trigonometric functions in
terms of u before evaluating at the limits of integration.)
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(b) Since we are rotating about the y-axis we exchange the roles of x and y in the definition; since the curve
is given as y = g(x) we use the second formula for the area. We have

dy

dx
=

1

2
x1/2 =⇒ 1 +

(
dy

dx

)2

= 1 +
x

4
.

It is convenient to use the substitution u = x+ 4 to calculate the integral for surface area:

S =

∫ d

c

2πx

√
1 +

(
dy

dx

)2

dx = 2π

∫ 12

0

x

√
1 +

x

4
dx = 2π

∫ 12

0

x
1

2

√
4 + x dx

= π

∫ 16

4

(u− 4)
√
u du = π

∫ 16

4

u3/2 − 4u1/2 du = π

[
2u3/2

5
− 8u3/2

3

]16
4

= π

(
2

5
(992)− 8

3
(56)

)
=

3712

15
π.

�

Part 5: Differential equations

Exponential growth and decay. If a quantity y = f(x) grows (or decays) in proportion to its size this

can be written as an equation:
dy

dx
= kx, where k is a number. This is our first example of a differential

equation.
Since the above equation asks for a function whose derivative is a constant multiple of the function it is

easy to see that exponential functions satisfy this differential equation. In fact there are no other solutions.

Theorem. The only solutions of the differential equation dy
dt = ky are exponential functions

y(t) = Cekt, where C = y(0).

This theorem explains why quantities which grow or decay in proportion to their size are said to have
exponential growth or decay. We have used the variable t because many natural occurrences of exponential
growth and decay have time as the variable.

• Population growth: if P (t) is the size of a population at time t then it often satisfies dP
dt = kP .

• Radioactive decay: let m(t) be the mass of a radioactive substance remaining after time t, from an
initial mass m0. It has been found by experiments that dm

dt = km for a constant k < 0 (depending

on the substance); equivalently − 1
m
dm
dt is constant. This means that a radioactive substance decays

exponentially: m(t) = m0e
kt. Physicists express the rate of decay in terms of half-life − ln(2)/k, a

positive number which is the time taken for half the mass to decay.
• Newton’s law of cooling: Newton discovered that the rate at which an object cools (or warms) is

proportional to the difference between its temperature T and the surrounding temperature Ts; that
is dT

dt = k(T − Ts), where T (t) is the temperature of an object at time t. Writing y(t) = T (t) − Ts
this relationship becomes dy

dt = ky, so the temperature of the object grows/decays exponentially.
• Continuously compounded interest: if an amount of money A0 is invested at an interest rate r, and
r is compounded n times in t years, then the value of the investment is given by A(t) = A0(1 + r

n )nt.
The interest paid increases as n grows larger (the more often interest is compounded), and as n→∞
(interest is compounded continuously) the value of the investment is given by

A(t) = lim
n→∞

A0(1 +
r

n
)nt = A0

(
lim
m→∞

(
1 +

1

m

)m)rt
= A0e

rt, (m = n/r).

It follows that dA
dt = rA(t); that is, with continuously compounded interest the rate of increase of an

investment is proportional to the size of the investment.

Example. (a) A curve passes through the point (0, 2) and has the property that the slope of the curve at
any point P is three times the y-coordinate of P . Find an equation for the curve.

(b) How long will it take an investment to double in value if the interest rate is 6% compounded continuously?
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Solution. (a) Suppose the curve is y = f(x). We are told that dy
dx = 3y = 3f(x), so (by the theorem)

we must have y = Cekx. Since C = Ce0 = y(0) = 2 we have C = 2, and differentiating gives

3y dydx = kCekx = 2kekx, so k = 3. Hence the equation of the curve is y = 2e3x.
(b) We know A = A0e

rt, here r = 0.06, and we want to find t for which A = 2A0:

2A0 = A0e
0.06t =⇒ e0.06t = 2 =⇒ t =

ln(2)

0.06
≈ 11.55,

so the investment will double in approximately 11.55 years.
�

Modelling with differential equations. A differential equation is an equation involving an unknown
function and one or more of its derivatives; the order of a differential equation is the highest order derivative
which occurs in the equation.

A function is a solution of a differential equation if the equation is satisfied when the function and its
derivatives are substituted into the equation; we may need to find the general form of the solution to an
equation or a particular solution which also satisfies a given initial condition (an initial condition gives a
point which the curve given by the solution must pass through).

It can be very difficult to solve a differential equation, there may be no nice expression for a solution or
the equation is too complicated to guess a solution. We have already solved differential equations of the
form f ′(x) = kf(x) (exponential growth and decay) and many differential equations of the form y′ = f(x)
(solving this equation amounts to calculating the integral of f(x)). Finding the solution to a differential
equation often involves a bit of guesswork as well as a good understanding of the behaviour of the elementary
functions and their derivatives.

Writing a differential equation which models a given situation requires a good understanding of how the
situation is likely to behave at different times, and the natural constraints. For example, we used population
size as an example of exponential growth, but that model does not account for the face that when most
populations P (t) have a critical level M above which they cannot support themselves; As t increases we
want our model for P (t) to reflect that P (t) grows towards M , or decreases towards M . One possible model
for population size is P ′(t) = kP (1− P

M ), which is approximately the model we had above when P is small
compared to M , when P is close to M P (t) changes at a slow rate, and when P (t) is larger than M it
decreases towards M . This model reflects population size more accurately than the previous one.

Separable differential equations. A separable differential equation is a first-order differential equation
which can be written in the form

dy

dx
= g(x)f(y) =

g(x)

h(y)
, h(y) =

1

f(y)
,

where we assumed f(y) 6= 0 for the second equality. The solutions to such an equation can be found by
writing in terms of differentials and integrating each side:

dy

dx
= g(x)f(y) =

g(x)

h(y)
=⇒ h(y) dy = g(x) dx =⇒

∫
h(y) dy =

∫
g(x) dx.

This procedure can be justified by taking the derivative of the latter equality with respect to x, using the
chain rule.

Example. Solve the differential equations.

(a)
dy

dx
=
x sin(x)

y
, y(0) = −1

(b) xy′ = y + xey/x

Solution. (a) Separating the variables and integrating gives:

y dy = x sin(x) dx =⇒
∫
y dy =

∫
x sin(x) dx =⇒ y2

2
= −x cos(x) + sin(x) + c,

using integration by parts. Using y(0) = −1 gives 1
2 (−1)2 = 0 + sin(0) + c, so c = 1/2. Hence

y2 = −2x cos(x) + 2 sin(x) + 1, so y is either the positive or negative square root of the right side. Since

y(0) = −1 can occur only if we take the negative square root we have y = −
√
−2x cos(x) + 2 sin(x) + 1.
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(b) Rearranging the equation gives y′ = y
x + ey/x, so letting v = y/x we have dy

dx = v+ ev. Since y = xv the

product rule gives dy
dx = x dvdx + v, so the equation becomes

x
dv

dx
+ v = v + ev =⇒ dv

ev
=
dx

x
=⇒

∫
dv

ev
=

∫
dx

x
=⇒ −e−v = ln |x|+ c =⇒ v = − ln(− ln |x| − c),

assuming x 6= 0. Replacing v with y/x we obtain y = −x ln(− ln |x| − c).
�

The orthogonal trajectories of a family of curves is a second family of curves, each of which meets the
members of the first family at right angles. To calculate the orthogonal trajectories of a family of curves:

(1) take the derivative of a typical member of that family to find its slope m (in terms of x, y and
possibly another parameter k);

(2) the slope of an orthogonal trajectory must then be − 1
m , and we can use the equation we began with

to eliminate k, expressing this slope in terms of x and y;
(3) the orthogonal trajectories therefore satisfy the differential equation dy

dx = − 1
m , which can be solved

if it is a separable differential equation.

Example. Find the orthogonal trajectories of the family of curves y =
k

x2
.

Solution. Since dy
dx = − 2k

x the orthogonal trajectories must have slope x
2k = x

2yx2 = 1
2xy (since yx2 = k).

Solving this differential equation gives

dy

dx
=

1

2xy
=⇒

∫
y dy =

∫
1

2x
dx =⇒ y2

2
=

1

2
ln |x|+ c1,

so the orthogonal trajectories have equations given by y2 = ln |x|+ c. �

A mixing problem involves finding the concentration of a solution which is changing in strength. Such
problems often lead to separable differential equations.

Example. A tank contains 1000 litres of brine, with 15 kg of dissolved salt. Pure water enters the tank at
a rate of 10 litres per minute, and is immediately mixed with the solution; the solution drains from the tank
at a rate of 10 litres per minute. How much salt is in the tank at time t minutes?

Solution. Let y(t) be the salt remaining in the tank after t minutes, so y(0) = 15. The concentration at time

t is y(t)/1000 and dy
dt = − y(t)

100010 = −y(t)100 . Solving this separable equation gives∫
1

y
dy = − 1

100

∫
dt =⇒ ln(y) = − t

100
+ c;

since y(0) = 15 we have c = ln(15). We have

ln(y) = ln(15)− t

100
=⇒ ln

( y
15

)
= − t

100
=⇒ y

15
= e−t/100.

Thus y = 15e−t/100. �
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Common indefinite integrals

Linearity:

∫
(cf(x) + dg(x)) dx = c

∫
f(x) dx+ d

∫
g(x) dx (c, d ∈ R)

Substitution:

∫
f ′ (g(x)) g′(x) dx =

∫
f ′(u) du = f ◦ g(x) u = g(x)

Parts:

∫
f(x)g′(x) dx = f(x)g(x)−

∫
g(x)f ′(x) dx or

∫
u dv = uv −

∫
v du

∫
xn dx =

xn+1

n+ 1
+ c (n 6= −1),

∫
1

x
dx = ln |x|+ c

Exponential functions:

∫
ex dx = ex + c,

∫
bx dx =

bx

ln(b)
+ c (b > 0)

Trigonometric functions:∫
sin(x) dx = − cos(x) + c,

∫
cos(x) dx = sin(x) + c,

∫
sec2(x) dx = tan(x) + c

∫
csc2(x) dx = − cot(x) + c,

∫
sec(x) tan(x) dx = sec(x) + c,

∫
csc(x) cot(x) dx = − csc(x) + c

∫
sec(x) dx = ln |sec(x) + tan(x)|+ c,

∫
csc(x) dx = ln |csc(x)− cot(x)|+ c

∫
tan(x) dx = ln |sec(x)|+ c,

∫
cot(x) dx = ln |sin(x)|+ c

∫
1

x2 + a2
dx =

1

a
tan−1

(x
a

)
+ c,

∫
1√

a2 − x2
dx = sin−1

(x
a

)
+ c (a > 0)

∫
1

x2 − a2
dx =

1

2a
ln

∣∣∣∣x− ax+ a

∣∣∣∣+ c,

∫
1√

x2 ± a2
dx = ln

∣∣∣x+
√
x2 ± a2

∣∣∣+ c
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Formula sheet

Volumes and areas. Sphere of radius r: V =
4

3
πr3, A = 4πr2.

Cylinder of radius r and height h: V = πr2h, A = 2πr2 + 2πrh.

Cone of base radius r and height h: V =
1

3
πr2h, A = πr

√
r2 + h2.

Equation of a circle and line. The equation of a circle of radius r centred at the point (a, b) is (x−a)2 +
(y − b)2 = r2.

The slope of a line through the points P1(x1, y1) and P2(x2, y2) is m =
y2 − y1
x2 − x1

.

The equation of a line with slope m through the point P1(x1, y1) is y − y1 = m(x− x1).

Summations.
n∑
i=1

i =
n(n+ 1)

2
,

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
,

n∑
i=1

i3 =
n2(n+ 1)2

4

Trigonometric identities.

1 = sin2(x) + cos2(x), 1 + tan2(x) = sec2(x), 1 + cot2(x) = csc2(x)

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y), sin(x− y) = sin(x) cos(y)− cos(x) sin(y)

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y), cos(x− y) = cos(x) cos(y) + sin(x) sin(y)

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
, tan(x− y) =

tan(x)− tan(y)

1 + tan(x) tan(y)

cos(2x) = cos2(x)− sin2(x) = 2 cos2(x)− 1 = 1− 2 sin2(x)

sin(2x) = 2 sin(x) cos(x), tan(2x) =
2 tan(x)

1− tan2(x)

sin2(x) =
1− cos(2x)

2
, cos2(x) =

1 + cos(2x)

2

Inverse trigonometric functions.

sin−1(y) = x ⇐⇒ x = sin(y) and − π

2
≤ x ≤ π

2

cos−1(y) = x ⇐⇒ x = cos(y) and 0 ≤ x ≤ π

tan−1(y) = x ⇐⇒ x = tan(y) and − π

2
< x <

π

2

Useful trigonometric values.

θ sin(θ) cos(θ)
0 0 1
π
6

1
2

√
3
2

π
4

√
2
2

√
2
2

π
3

√
3
2

1
2

π
2 1 0
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Derivatives of elementary functions. We assume that f and g are differentiable functions, and that the
various combinations of functions are defined; a, b, c are real numbers.

Linearity:
d

dx
(af(x) + bg(x)) = af ′(x) + bg′(x)

Chain rule:
d

dx
(f ◦ g(x)) = f ′ (g(x)) g′(x)

Product rule:
d

dx
((fg)(x)) = f(x)g′(x) + f ′(x)g(x)

Quotient rule:
d

dx

(
f

g
(x)

)
=
g(x)f ′(x)− f(x)g′(x)

(g(x))
2

Power rule:
d

dx
(xn) = nxn−1,

d

dx
(c) = 0

Exponential functions:
d

dx
(ex) = ex,

d

dx
(bx) = bx ln(b)

Logarithmic functions:
d

dx
(ln |x|) =

1

x
,

d

dx
(logb(x)) =

1

x ln(b)

Trigonometric functions:

d

dx
(sin(x)) = cos(x),

d

dx
(cos(x)) = − sin(x),

d

dx
(tan(x)) = sec2(x)

d

dx
(csc(x)) = − csc(x) cot(x),

d

dx
(sec(x)) = sec(x) tan(x),

d

dx
(cot(x)) = − csc2(x)

Inverse trigonometric functions:

d

dx

(
sin−1(x)

)
=

1√
1− x2

,
d

dx

(
cos−1(x)

)
= − 1√

1− x2
,

d

dx

(
tan−1(x)

)
=

1

1 + x2

d

dx

(
csc−1(x)

)
= − 1

x
√
x2 − 1

,
d

dx

(
sec−1(x)

)
=

1

x
√
x2 − 1

,
d

dx

(
cot−1(x)

)
= − 1

1 + x2

Hooke’s Law. The force required to maintain a spring stretched x units beyond its natural length is
proportional to x: f(x) = kx for some k > 0 (provided x is not too large).
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Geometric formulas

Our study of integration has allowed us to calculate the area, volume and perimeter of a number of familiar
shapes. The required calculations are given in this section.

Circle. A circle of radius r, centred at the origin, has equation x2 + y2 = r2; the upper semicircle has
equation y =

√
r2 − x2.

The area of the circle is therefore twice the area under the curve y =
√
r2 − x2:

A = 2

∫ r

−r

√
r2 − x2 dx = 2

∫ π/2

−π/2

√
r2 − r2 sin2(θ)r cos(θ) dθ = 2r2

∫ π/2

−π/2
cos2(θ) dθ

= r2
∫ π/2

−π/2
1 + cos(2θ) dθ = r2

[
θ +

1

2
sin(2θ)

]π/2
−π/2

= r2
((π

2
+ 0
)
−
(
−π

2
+ 0
))

= πr2.

The trigonometric substitution is x = r sin(θ), so dx = r cos(θ) dθ and x = r =⇒ θ = sin−1(1) = π/2,
x = −r =⇒ θ = sin−1(−1) = −π/2.

The perimeter of the circle is twice the length of the curve y =
√
r2 − x2:

dy

dx
=

1

2
(r2 − x2)−1/2(−2x) =

−x√
r2 − x2

=⇒ 1 +

(
dy

dx

)2

= 1 +
x2

r2 − x2
=
r2 − x2

r2 − x2
+

x2

r2 − x2
=

r2

r2 − x2
,

so the perimeter is

2

∫ r

−r

√
1 +

(
dy

dx

)2

dx = 2

∫ r

−r

r√
r2 − x2

dx = 2r

∫ π/2

−π/2

r cos(θ)

r cos(θ)
dθ = 2r [θ]

π/2
−π/2 = 2πr.

The trigonometric substitution is x = r sin(θ), so dx = r cos(θ) dθ and x = r =⇒ θ = sin−1(1) = π/2,
x = −r =⇒ θ = sin−1(−1) = −π/2.

Consider a sector of a circle of radius r, with central angle θ (0 < θ < π/2). We calculate the area of this
sector as the sum of the area of a right-angled triangle with base r cos(θ) and height r sin(θ) and the area

under the curve y =
√
r2 − x2 from x = r cos(θ) to x = r. The area of the triangle is 1

2r
2 sin(θ) cos(θ), and∫ √

r2 − x2 dx =

∫
α

sin(α)(−r sin(α)) dα = −r2
∫

sin2(α) dα = −r
2

2

∫
1− cos(2α) dα

= −r
2

2
(α− sin(2α)) + c = −r

2

2
(α− sin(α) cos(α)) + c = −r

2

2
cos−1

(x
r

)
+

1

2
x
√
r2 − x2 + c.

The trigonometric substitution is x = r cos(θ), which works more nicely in this case, and we have used some
trigonometric identities. Hence the area under this curve is[
−r

2

2
cos−1

(x
r

)
+

1

2
x
√
r2 − x2

]r
r cos(θ)

=
1

2

(
0− (−r2θ + r cos(θ) sin(θ))

)
=

1

2
r2θ − 1

2
r2 sin(θ) cos(θ).

It follows that the area of the sector in question is

1

2
r2 sin(θ) cos(θ) +

1

2
r2θ − 1

2
r2 sin(θ) cos(θ) =

1

2
r2θ.

The area of a sector with central angle larger than π/2 can be calculated by combining this formula with
the formula for the area of a circle.

Ellipse. The longest possible diameter of an ellipse is called its major axis; the minor axis is the diameter
of the ellipse which is perpendicular to the major axis. Consider an ellipse centred at the origin, with major
axis along the x-axis. Let a denote half the length of the major axis and b half the length of the minor axis,

then the equation of the ellipse is x2

a2 + y2

b2 = 1 (if a = b = r then this is the equation of a circle of radius r).

The area of the ellipse is therefore twice the area under the curve y = b
√

1− x2

a2 :

A = 2

∫ a

−a
b

√
1− x2

a2
dx = 2

∫ a

−a
b

√
a2 − x2
a2

dx =
b

a
2

∫ a

−a

√
a2 − x2 dx,
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which is b
a multiplied by the integral we solved to find the area of a circle of radius a, therefore A = b

aπa
2 =

πab.

The circumference of the ellipse is twice the length of the curve y = b
√

1− x2

a2 ; the integral given by the

arc length formula does not have a solution in terms of elementary functions.

Cylinder. A cylinder of radius r and height h has volume πr2h. The area of the side of the cylinder is
2πrh, since cutting and flattening the surface of the cylinder gives a rectangle with height h and length 2πr.
(The circles on the top and bottom both have area πr2, so some sources give the total surface area of the
cylinder as 2πr2h+ 2πrh.)

These expressions for the volume and surface area of a cylinder were taken for granted when we derived
the general formulas for volume and surface area, so it is circular to use these formulas in this case.

Cavalieri’s principle states that if a family of parallel planes gives equal cross-sectional areas for two solids
S1 and S2 then the volumes of S1 and S2 are equal. This principle allows one to calculate the volume of an
oblique cylinder (in which the line joining the centres of the top and bottom circles is not perpendicular to
these circles).

Cone. To calculate the volume of a cone of base radius r and perpendicular height h we place the centre of
the base of the cone at the origin, so the apex of the cone lies on the y-axis at height h. The cone is then the
solid formed by rotating the region enclosed by the lines x = 0, y = 0 and y = −hr x+ h about the y-axis.

To calculate the volume using discs note that a disc centred at the point (y, 0) has radius s, and by similar
triangles

s

h− y
=
r

h
=⇒ s =

r(h− y)

h
,

so the area of this disc is A(y) = πs2 = πr2

h2 (h− y)2. Therefore the volume of the cone is

V =

∫ h

0

πr2

h2
(h− y)2 dy =

πr2

h2

∫ h

0

h2 − 2hy + y2 dy =
πr2

h2

[
h2r − hy2 +

y3

3

]h
0

=
1

3
πr2h.

To calculate the volume using shells note that the shell with radius x has height y = −hr x + h, so the
volume of the cone is

V =

∫ r

0

2πx

(
−h
r
x+ h

)
dx = 2π

∫ r

0

−h
r
x2 + hx dx = 2π

[
−h
r

x3

3
+
hx2

2

]r
0

=
1

3
πr2h.

To find the surface area of a cone one can take a point on the edge of the base and cut the cone along a
straight line joining this point to the apex. Flattening this shape gives the sector of a circle with radius l
(the length of the line along which the cut was made), arc length 2πr (since the arc is the circumference of
the circle which formed the base of the cone) and angle angle θ = 2πr

l (by the definition of a radian). Using
the formula for the area of a sector of a circle we get an expression for the surface area:

A =
1

2
l2θ =

1

2
l2

2πr

l
= πrl.

It would be circular to calculate the surface area of a cone using the formula for area of a surface of revolution
because the argument above was used as part of the derivation of this formula.

One can use the above to calculate the volume or surface area of a frustum of a cone by viewing the
frustum as a large cone with a smaller cone removed.

Cavalieri’s principle allows us to calculate the volume of a slanted cone (in which the line joining the apex
to the centre of the base is not perpendicular to the base).

Sphere. To calculate the volume and surface area of a sphere of radius r we position the sphere so its centre
is at the origin; the sphere is then the solid obtained by rotating the region under the curve y =

√
r2 − x2

about the x-axis.
To calculate the volume using discs note that a disc centred at the point (x, 0) has radius y =

√
r2 − x2,

so the area of this disc is A(x) = π(r2 − x2). Therefore the volume of the sphere is

V =

∫ r

−r
π(r2 − x2) dx = 2

∫ r

0

π(r2 − x2) dx = 2π

[
r2x− x3

3

]r
0

= 2π

(
r3 − r3

3

)
=

4

3
πr3.
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To calculate the volume using shells note that the shell with radius x has height 2y = 2
√
r2 − x2. Therefore

the volume of the sphere is

V =

∫ r

0

2πx(2
√
r2 − x2) dx = 4π

∫ r

0

x
√
r2 − x2 dx = 2π

∫ r2

0

√
u du = 2π

[
2

3
u3/2

]r2
0

=
4

3
πr3.

The substitution is u = r2 − x2, so − 1
2du = x dx and x = 0 =⇒ u = r2, x = r =⇒ u = 0.

The surface area of the sphere is the area of the surface obtained by rotating the curve y =
√
r2 − x2

about the x-axis. We have

dy

dx
=

1

2
(r2 − x2)−1/2(−2x) =

−x√
r2 − x2

, so 1 +

(
dy

dx

)2

= 1 +
x2

r2 − x2
=
r2 − x2

r2 − x2
+

x2

r2 − x2
=

r2

r2 − x2
.

The surface area of the sphere is therefore∫ r

−r
2πf(x)

√
1 +

(
dy

dx

)2

dx = 2π

∫ r

−r

√
r2 − x2 r√

r2 − x2
dx = 2π [rx]

r
−r = 4πr2.

You may notice that some of the above shapes have a special property: the derivative of the formula for
their area, with respect to the radius, is the formula for their perimeter; or the derivative of the formula for
their volume is the formula for their surface area. For example, the area of a circle of radius r is A = πr2,
and dA

dr = 2πr which is the perimeter of the circle. Similarly, the volume of a sphere of radius r is V = 4
3πr

3,

and dV
dr = 4πr2, which is the surface area of the sphere.

To explain these formulas we will show why the integral of the perimeter of a circle with respect to r is
the area of a circle; a similar argument shows that the integral of the surface area of a sphere, with respect
to the radius, is the volume of the sphere. Place the circle so it is centred at the origin, and divide the x-axis
in n intervals [xi−1, xi] of length ∆x = r

n . A “shell” of the circle is the area of the circle which lies between
radius xi−1 and xi, and therefore has area

π(xi)
2 − π(xi−1)2 = π(xi + xi−1)(xi − xi−1) = π(xi + xi−1)∆x = 2πxi∆x,

where xi = 1
2 (xi +xi−1) is the average radius of the shell. The sum of the areas of these shells approximates

the area of the circle, and as n increases the approximations become more accurate, so

A = lim
n→∞

n∑
i=1

2πxi∆x =

∫ r

0

2πx dx.

Thus the area of the circle is the integral of the expression for the perimeter.
It appears that for squares and cubes the perimeter and area (respectively, surface area and volume) are

not linked by differentiation: a square of side l has perimeter 4l and area A = l2, so dA
dl = 2l is not the

perimeter. However, if one defines the “radius” of the square to be r = l/2 then the perimeter of the square
is 4l = 8r and the area of the square is A = l2 = (2r)2 = 4r2, so dA

dr = 8r is the perimeter. Similarly, if one
defines the “radius” of a cube to be r = l/2, where l is the length of one of the edges, then the surface area
of the cube is A = 6l2 = 24r2 and the volume of the cube is V = l3 = 8r3; once again dV

dr = A.
It turns out that any regular shape has the property: the derivative of the area with respect to radius is

the perimeter, as long as the radius is defined suitably. The correct notion of radius is the distance from the
centre of the object to the midpoint of one of the sides, with the radius and the side meeting at a right-angle.

To prove this relationship we derive a formula for the perimeter and area of a regular polygon with n
sides, each side of length l (n = 3 is an equilateral triangle, n = 4 a square, n = 5 a pentagon, etc.). The
length of the perimeter of this polygon is Pn = nl. A radius of the polygon has length r, and joins the centre
of the polygon to the midpoint of a side, and forms a right-angled triangle with the line joining the centre
to where two sides meet; the angle between the radius and this line is θ. Since the solid is made up of 2n

such right-angled triangles we have θ = 2π
2n = π

n . Also tan(θ) = opp
adj = l/2

r , so l = 2r tan(θ) = 2r tan(π/n).

The perimeter of the polygon is therefore

Pn = nl = 2rn tan
(π
n

)
.
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The area of the right-angled triangle is half the base multiplied by the height: 1
2
l
2r = 1

2r
2 tan(π/n); since

the polygon is made up of 2n such triangles the area of the polygon is

An = 2n
1

2
r2 tan

(π
n

)
= r2n tan

(π
n

)
.

Since n tan(π/n) is constant we see that dA
dt = P ; this formula applies for any regular polygon. Note that

when n = 4 the above formulas give the correct expressions for the perimeter and area of a square. As the
number of sides n goes to infinity our regular polygon approximates a circle, and by l’Hospital’s rule

lim
n→∞

n tan
(π
n

)
= lim
t→0

tan(πt)

t

H
= lim
t→0

π sec2(πt)

1
= π,

so

lim
n→∞

Pn = lim
n→∞

2rn tan
(π
n

)
, and lim

n→∞
An = lim

n→∞
r2n tan

(π
n

)
= πr2,

which are the expressions for the perimeter and area of a circle.
Similarly, any regular solid has the property that the surface area of the solid is the derivative of the

volume of the solid, with respect to the radius, if the radius of the solid is the distance from the centre of
the solid to the centre of any face of the solid. It is possible to use a similar argument to the one given above
for perimeter and area to show the relationship between surface area and volume for a regular solid, but it
is too long to write out.

A similar principle can be established for solids of rotation if one can define a suitable notion of radius.
We will not develop this here, but content ourselves by noting that for a normal cylinder of base radius r
the line joining the the centre of the cylinder to the surface, meeting the surface at right angles, is the usual
radius r. The derivative of the volume of the cylinder with respect to r is again the expression for the surface
area.

The explanations for this phenomenon is always the same: if a suitable notion of radius can be found
then the shape can be thought of as nested shells, so the volume of the shape is the integral of the surface
area of these shells.


