Approximation properties for group actions via multipliers

Andrew McKee with A. Skalski, I. Todorov and L. Turowska

Chalmers University of Technology and the University of Gothenburg

IPM Tehran January 2020 Algebras associated to a group

Throughout G is a discrete group. The **left regular representation** of G is

$$\lambda: G \to \mathcal{B}(\ell^2(G)); \ (\lambda_s \xi)(t) = \xi(s^{-1}t).$$

Algebras associated to a group

Throughout G is a discrete group. The left regular representation of G is

$$\lambda: G \to \mathcal{B}(\ell^2(G)); \ (\lambda_s \xi)(t) = \xi(s^{-1}t).$$

Several associated algebras:

reduced group C*-algebra C^{*}_r(G), realised as closure of finite sums ∑_{r∈G} a_rλ_r (a_r ∈ C) in operator norm of B(ℓ²(G));

Algebras associated to a group

Throughout G is a discrete group. The left regular representation of G is

$$\lambda: \mathcal{G} \to \mathcal{B}(\ell^2(\mathcal{G})); \ (\lambda_s \xi)(t) = \xi(s^{-1}t).$$

Several associated algebras:

- reduced group C*-algebra C^{*}_r(G), realised as closure of finite sums ∑_{r∈G} a_rλ_r (a_r ∈ C) in operator norm of B(ℓ²(G));
- ▶ group von Neumann algebra vN(G) = $C_r^*(G)'' = \{\lambda_s : s \in G\}'';$
- Fourier algebra A(G): Banach algebra (pointwise operations) of coeffecients of λ

$$v: G \to \mathbb{C}; \ v(s) = \langle \lambda_s \xi, \eta \rangle \ \text{for some } \xi, \eta \in \ell^2(G).$$

We have $A(G)^* = vN(G)$.

It is often useful for us to think of operators in $\mathcal{B}(\ell^2(G))$ as matrices over \mathbb{C} indexed by $G \times G$:

$$T \in \mathcal{B}(\ell^2(G)), \ T_{s,t} := \langle T\delta_t, \delta_s \rangle \in \mathbb{C}.$$

It is often useful for us to think of operators in $\mathcal{B}(\ell^2(G))$ as matrices over \mathbb{C} indexed by $G \times G$:

$$T \in \mathcal{B}(\ell^2(G)), \ T_{s,t} := \langle T\delta_t, \delta_s \rangle \in \mathbb{C}.$$

The matrix of $x \in C_r^*(G)$ is constant down the diagonals. This means that $x_{s,t}$ depends only on st^{-1} .

$$\begin{pmatrix} \ddots & \ddots & & & \\ \ddots & x_{e} & x_{r} & \ddots & \\ & x_{r-1} & x_{e} & x_{r} & \\ & \ddots & x_{r-1} & x_{e} & \ddots \\ & & & \ddots & \ddots \end{pmatrix}$$

The functional $x \mapsto \langle x \delta_e, \delta_e \rangle = x_e$ is a tracial state on $C_r^*(G)$, acting by

$$\sum_{r\in G}a_r\lambda_r\mapsto a_e.$$

Theorem (Lance '74)

A discrete group G is amenable if and only if $C_r^*(G)$ is nuclear.

Theorem (Lance '74)

A discrete group G is amenable if and only if $C_r^*(G)$ is nuclear.

Nuclearity: there exists a net of finite rank, completely positive contractions $(\Phi_i : A \to A)_i$ with $||\Phi_i(a) - a|| \to 0$ $(a \in A)$. Amenability: there exists a net of finitely supported, normalised positive-definite functions $(u_i : G \to \mathbb{C})_i$ with $u_i \to 1$ pointwise.

Theorem (Lance '74)

A discrete group G is amenable if and only if $C_r^*(G)$ is nuclear.

Proof.

Amenable groups have a net of finitely supported, positive-definite, Herz–Schur multipliers approximating the constant function 1. \Box

Nuclearity: there exists a net of finite rank, completely positive contractions $(\Phi_i : A \to A)_i$ with $\|\Phi_i(a) - a\| \to 0$ $(a \in A)$.

Amenability: there exists a net of finitely supported, normalised positive-definite functions $(u_i : G \to \mathbb{C})_i$ with $u_i \to 1$ pointwise.

A Herz–Schur multiplier is a function $u : G \to \mathbb{C}$ such that

$$S_u: C_r^*(G) \to C_r^*(G); \ S_u\left(\sum_{r \in G} a_r \lambda_r\right) = \sum_{r \in G} u(r) a_r \lambda_r$$

is completely bounded. Characterisation: $u(st^{-1}) = \langle V(s), W(t) \rangle$.

A Herz–Schur multiplier is a function $u: G \to \mathbb{C}$ such that

$$S_u: C_r^*(G) \to C_r^*(G); \ S_u\left(\sum_{r \in G} a_r \lambda_r\right) = \sum_{r \in G} u(r) a_r \lambda_r$$

is completely bounded. Characterisation: $u(st^{-1}) = \langle V(s), W(t) \rangle$. Proof (Lance).

Let $(u_i : G \to \mathbb{C})_i$ be the finitely supported, normalised positive-definite functions approximating the constant function 1, from amenability of *G*. Viewing $(u_i)_i$ as **Herz–Schur multipliers**:

A Herz–Schur multiplier is a function $u: G \to \mathbb{C}$ such that

$$S_u: C_r^*(G) \to C_r^*(G); \ S_u\left(\sum_{r \in G} a_r \lambda_r\right) = \sum_{r \in G} u(r) a_r \lambda_r$$

is completely bounded. Characterisation: $u(st^{-1}) = \langle V(s), W(t) \rangle$. Proof (Lance).

Let $(u_i : G \to \mathbb{C})_i$ be the finitely supported, normalised positive-definite functions approximating the constant function 1, from amenability of *G*. Viewing $(u_i)_i$ as **Herz–Schur multipliers**:

 u_i finite support $\implies S_{u_i}$ finite rank u_i normalised pos.-def. Herz–Schur $\implies S_{u_i}$ contractive comp. pos. $u_i \rightarrow 1$ pointwise $\implies S_{u_i} \rightarrow \mathrm{id}$ point-norm

A Herz–Schur multiplier is a function $u: G \to \mathbb{C}$ such that

$$S_u: C_r^*(G) \to C_r^*(G); \ S_u\left(\sum_{r \in G} a_r \lambda_r\right) = \sum_{r \in G} u(r) a_r \lambda_r$$

is completely bounded. Characterisation: $u(st^{-1}) = \langle V(s), W(t) \rangle$. Proof (Lance).

Let $(u_i : G \to \mathbb{C})_i$ be the finitely supported, normalised positive-definite functions approximating the constant function 1, from amenability of *G*. Viewing $(u_i)_i$ as **Herz–Schur multipliers**:

 u_i finite support $\implies S_{u_i}$ finite rank u_i normalised pos.-def. Herz-Schur $\implies S_{u_i}$ contractive comp. pos. $u_i \rightarrow 1$ pointwise $\implies S_{u_i} \rightarrow \mathrm{id}$ point-norm

Conversely, if $(\Phi_i)_i$ implement nuclearity of $C_r^*(G)$ define

$$u_i: G \to \mathbb{C}; \ u_i(r) := \langle \Phi_i(\lambda_r) \lambda_r^* \delta_e, \delta_e \rangle.$$

Haagerup programme: Use Herz–Schur multipliers as Lance did to link properties of G and $C_r^*(G)$ (or vN(G)).

Haagerup programme: Use Herz–Schur multipliers as Lance did to link properties of G and $C_r^*(G)$ (or vN(G)). Lance's proof:

 u_i finite support $\implies S_{u_i}$ finite rank u_i normalised pos.-def. Herz–Schur $\implies S_{u_i}$ contractive comp. pos. $u_i \rightarrow 1$ pointwise $\implies S_{u_i} \rightarrow id$ point-norm

Haagerup's idea: adjust the conditions on the u_i and see what properties of $C_r^*(G)$ the S_{u_i} implement.

Haagerup programme: Use Herz–Schur multipliers as Lance did to link properties of G and $C_r^*(G)$ (or vN(G)). Lance's proof:

 u_i finite support $\implies S_{u_i}$ finite rank u_i normalised pos.-def. Herz–Schur $\implies S_{u_i}$ contractive comp. pos. $u_i \rightarrow 1$ pointwise $\implies S_{u_i} \rightarrow id$ point-norm

Haagerup's idea: adjust the conditions on the u_i and see what properties of $C_r^*(G)$ the S_{u_i} implement. Examples:

- weak amenability forget about positivity condition (just keep uniform boundedness), gives CBAP of C^{*}_r(G);
- Haagerup property require $C_0(G)$ positive-definite functions.

There are several other properties in the same vein: weak Haagerup property, the AP, ... Interesting consequences:

There are several other properties in the same vein: weak Haagerup property, the AP, ... Interesting consequences:

► free groups are the best-known non-amenable groups, but F₂ is not too bad — it is weakly amenable and has Haagerup property.

There are several other properties in the same vein: weak Haagerup property, the AP, ... Interesting consequences:

- ► free groups are the best-known non-amenable groups, but F₂ is not too bad it is weakly amenable and has Haagerup property.
- C^{*}_r(𝔽₂) is not nuclear (Lance), but as 𝔽₂ is weakly amenable this C^{*}-algebra has the CBAP, and therefore Grothendieck's MAP, answering an open question.

There are several other properties in the same vein: weak Haagerup property, the AP, ... Interesting consequences:

- free groups are the best-known non-amenable groups, but F₂ is not too bad it is weakly amenable and has Haagerup property.
- C^{*}_r(𝔽₂) is not nuclear (Lance), but as 𝔽₂ is weakly amenable this C^{*}-algebra has the CBAP, and therefore Grothendieck's MAP, answering an open question.
- ▶ Open problem: G weakly amenable with Λ_{WA}(G) = 1 ⇒ G Haagerup property. (The converse is known to be false.)

Crossed products

 $C_r^*(G)$ is a C^* -algebra which encodes information about G. Now we introduce the reduced crossed product, which encodes an action of G on a C^* -algebra.

Crossed products

 $C_r^*(G)$ is a C^* -algebra which encodes information about G. Now we introduce the reduced crossed product, which encodes an action of G on a C^* -algebra.

Action of G on a C^{*}-algebra A is a homomorphism $\alpha : G \to Aut(A)$. Triple (A, G, α) is a C^{*}-dynamical system.

Crossed products

 $C_r^*(G)$ is a C^* -algebra which encodes information about G. Now we introduce the reduced crossed product, which encodes an action of G on a C^* -algebra.

Action of G on a C^{*}-algebra A is a homomorphism $\alpha : G \to Aut(A)$. Triple (A, G, α) is a C^{*}-dynamical system.

From (A, G, α) we form **reduced crossed product** $A \rtimes_{\alpha, r} G$: finite sums $\sum_{r \in G} a_r \lambda_r$, $a_r \in A$, closed in operator norm of $\mathcal{B}(\ell^2(G) \otimes \mathcal{H})$ $(A \subseteq \mathcal{B}(\mathcal{H}))$.

Action encoded by $\lambda_s a \lambda_s^* = \alpha_s(a)$. When $A = \mathbb{C}$ this is $C_r^*(G)$.

$\label{eq:matrix} \begin{array}{l} \mbox{Matrix viewpoint} \\ \mathcal{T} \in \mathcal{B}(\ell^2(\mathcal{G}) \otimes \mathcal{H}) \mbox{ also has a matrix representation} \end{array}$

 $T_{s,t} := P_s T P_t^* \in \mathcal{B}(\mathcal{H}), \quad P_r : (\xi_s)_s \mapsto \xi_r.$

$\label{eq:matrix} \begin{array}{l} \mbox{Matrix viewpoint} \\ \mathcal{T} \in \mathcal{B}(\ell^2(G) \otimes \mathcal{H}) \mbox{ also has a matrix representation} \end{array}$

$$T_{s,t} := P_s TP_t^* \in \mathcal{B}(\mathcal{H}), \quad P_r : (\xi_s)_s \mapsto \xi_r.$$

The matrix of $x \in A \rtimes_{\alpha,r} G$ has a **diagonal pattern**.

$$\begin{pmatrix} \ddots & \ddots & & \\ \ddots & \alpha_{s}(x_{e}) & \alpha_{s}(x_{r}) & \ddots & \\ & x_{r-1} & x_{e} & x_{r} & \\ & \ddots & \alpha_{s-1}(x_{r-1}) & \alpha_{s-1}(x_{e}) & \ddots & \\ & & \ddots & \ddots & \end{pmatrix}$$

The map $x \mapsto x_e$ is a conditional expectation $\mathcal{E} : A \rtimes_{\alpha, r} G \to A$, acting by

$$\mathcal{E}: \sum_{r\in \mathcal{G}} a_r \lambda_r \mapsto a_e.$$

Question: how are the approximation properties of $A \rtimes_{\alpha,r} G$ related to the properties of A and G?

Question: how are the approximation properties of $A \rtimes_{\alpha,r} G$ related to the properties of A and G? **Guess**: A is nuclear and G is amenable $\implies A \rtimes_{\alpha,r} G$ is nuclear?

Question: how are the approximation properties of $A \rtimes_{\alpha,r} G$ related to the properties of A and G?

Guess: A is nuclear and G is amenable $\implies A \rtimes_{\alpha,r} G$ is nuclear? Correct! But there are nuclear crossed products formed by the action of non-amenable groups, so-called **amenable actions**.

Question: how are the approximation properties of $A \rtimes_{\alpha,r} G$ related to the properties of A and G?

Guess: A is nuclear and G is amenable $\implies A \rtimes_{\alpha,r} G$ is nuclear? Correct! But there are nuclear crossed products formed by the action of non-amenable groups, so-called **amenable actions**.

Guess: A has CBAP and G is weakly amenable $\implies A \rtimes_{\alpha,r} G$ has CBAP?

Question: how are the approximation properties of $A \rtimes_{\alpha,r} G$ related to the properties of A and G?

Guess: A is nuclear and G is amenable $\implies A \rtimes_{\alpha,r} G$ is nuclear? Correct! But there are nuclear crossed products formed by the action of non-amenable groups, so-called **amenable actions**.

Guess: A has CBAP and G is weakly amenable $\implies A \rtimes_{\alpha,r} G$ has CBAP? Wrong! Ex: $SL(2,\mathbb{Z})$ is weakly amenable, but $\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$ is not, so $C_r^*(\mathbb{Z}^2) \rtimes_{\alpha,r} SL(2,\mathbb{Z})$ does not have CBAP.

Question: how are the approximation properties of $A \rtimes_{\alpha,r} G$ related to the properties of A and G?

Guess: A is nuclear and G is amenable $\implies A \rtimes_{\alpha,r} G$ is nuclear? Correct! But there are nuclear crossed products formed by the action of non-amenable groups, so-called **amenable actions**.

Guess: A has CBAP and G is weakly amenable $\implies A \rtimes_{\alpha,r} G$ has CBAP? Wrong! Ex: $SL(2,\mathbb{Z})$ is weakly amenable, but $\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$ is not, so $C_r^*(\mathbb{Z}^2) \rtimes_{\alpha,r} SL(2,\mathbb{Z})$ does not have CBAP. **Option 1** (Brown–Ozawa): develop amenable actions, show that if G acts amenably then $A \rtimes_{\alpha,r} G$ has approximation property when A does.

Question: how are the approximation properties of $A \rtimes_{\alpha,r} G$ related to the properties of A and G?

Guess: A is nuclear and G is amenable $\implies A \rtimes_{\alpha,r} G$ is nuclear? Correct! But there are nuclear crossed products formed by the action of non-amenable groups, so-called **amenable actions**.

Guess: A has CBAP and G is weakly amenable $\implies A \rtimes_{\alpha,r} G$ has CBAP? Wrong! Ex: $SL(2,\mathbb{Z})$ is weakly amenable, but $\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$ is not, so $C_r^*(\mathbb{Z}^2) \rtimes_{\alpha,r} SL(2,\mathbb{Z})$ does not have CBAP. **Option 1** (Brown–Ozawa): develop amenable actions, show that if G acts amenably then $A \rtimes_{\alpha,r} G$ has approximation property when A does.

Option 2 (MSTT): develop Herz–Schur multipliers of dynamical systems, then follow the Haagerup programme.

Multipliers of crossed products

With Todorov and Turowska we developed Herz–Schur multipliers of a dynamical system.

Recall: $u: G \to \mathbb{C}$ is a Herz–Schur multiplier if map is completely bounded

$$S_u: C_r^*(G) \to C_r^*(G); \ S_u\left(\sum_{r \in G} a_r \lambda_r\right) = \sum_{r \in G} u(r)a_r \lambda_r, \quad a_r \in \mathbb{C}.$$

Multipliers of crossed products

With Todorov and Turowska we developed Herz–Schur multipliers of a dynamical system.

Recall: $u : G \to \mathbb{C}$ is a Herz–Schur multiplier if map is completely bounded

$$S_u: C_r^*(G) \to C_r^*(G); \ S_u\left(\sum_{r \in G} a_r \lambda_r\right) = \sum_{r \in G} u(r)a_r \lambda_r, \quad a_r \in \mathbb{C}.$$

Definition

 $F: G \to CB(A)$ is a Herz–Schur multiplier of (A, G, α) if map is completely bounded

$$S_F: A \rtimes_{\alpha,r} G \to A \rtimes_{\alpha,r} G; \ S_F\left(\sum_{r \in G} a_r \lambda_r\right) = \sum_{r \in G} F(r)(a_r)\lambda_r, \quad a_r \in A.$$

Characterisation: F is a Herz–Schur (A, G, α) -multiplier if and only if $\alpha_{s^{-1}}(F(st^{-1})(\alpha_s(a))) = W(s)^*\rho(a)V(t)$. S_F completely positive if and only if V = W. Haagerup programme for dynamical systems

Haagerup programme for groups:

property of $G \iff$ certain Herz–Schur mults \iff property of $C_r^*(G)$

Haagerup programme for dynamical systems

Haagerup programme for groups:

property of $G \iff$ certain Herz–Schur mults \iff property of $C_r^*(G)$

We can now do the same for C^* -dynamical systems:

property of $(A, G, \alpha) \stackrel{\text{def}}{\Leftrightarrow} \text{Herz-Schur mults} \Leftrightarrow \text{property of } A \rtimes_{\alpha, r} G$

Haagerup programme for dynamical systems

Haagerup programme for groups:

property of $G \iff$ certain Herz–Schur mults \iff property of $C_r^*(G)$

We can now do the same for C^* -dynamical systems:

property of $(A, G, \alpha) \stackrel{\mathsf{def}}{\Leftrightarrow} \mathsf{Herz}\mathsf{-Schur} \mathsf{ mults} \Leftrightarrow \mathsf{property} \mathsf{ of } A \rtimes_{\alpha, r} G$

So far we (M., Skalski, Todorov, Turowska) have written down the correct conditions for:

- weak amenability of (A, G, α) , *i.e.* CBAP of $A \rtimes_{\alpha, r} G$;
- nuclearity of (A, G, α) , *i.e.* nuclearity of $A \rtimes_{\alpha, r} G$;
- Haagerup property of (A, G, α), *i.e.* C^{*} Haagerup property of A ⋊_{α,r} G;
- AP of (A, G, α) , *i.e.* SOAP of $A \rtimes_{\alpha, r} G$.

Theorem (MSTT '18)

 (A, G, α) a C*-dynamical system, G discrete. TFAE:

i. there are Herz–Schur (A, G, α) -multipliers $(F_i)_i$ satisfying:

a. F_i positive and $||F_i(e)||_{cb} \le 1$; b. $F_i(r)$ finite rank, non-zero for only finitely many $r \in G$; c. $||F_i(r)(a) - a|| \to 0$ for all $r \in G, a \in A$.

ii. $A \rtimes_{\alpha,r} G$ is nuclear.

Theorem (MSTT '18)

 (A, G, α) a C^{*}-dynamical system, G discrete. TFAE:

i. there are Herz–Schur (A, G, α) -multipliers $(F_i)_i$ satisfying:

- a. F_i positive and $||F_i(e)||_{cb} \le 1$; b. $F_i(r)$ finite rank, non-zero for only finitely many $r \in G$; c. $||F_i(r)(a) - a|| \to 0$ for all $r \in G, a \in A$.
- ii. $A \rtimes_{\alpha,r} G$ is nuclear.

Proof.

(i) \Longrightarrow (ii) As in Lance's proof $(S_{F_i})_i$ implement nuclearity:

 F_i finite support and finite rank $\implies S_{F_i}$ finite rank F_i pos.-def. Herz-Schur, $\|F_i(e)\|_{cb} \leq 1 \implies S_{F_i}$ contractive comp. pos. $\|F_i(r)(a) - a\| \to 0 \implies S_{F_i} \to id$ Theorem (MSTT '18)

 (A, G, α) a C*-dynamical system, G discrete. TFAE:

i. there are Herz–Schur (A, G, α) -multipliers $(F_i)_i$ satisfying:

- a. F_i positive and $||F_i(e)||_{cb} \le 1$; b. $F_i(r)$ finite rank, non-zero for only finitely many $r \in G$; c. $||F_i(r)(a) - a|| \to 0$ for all $r \in G, a \in A$.
- ii. $A \rtimes_{\alpha,r} G$ is nuclear.

Proof.

(i) \Longrightarrow (ii) As in Lance's proof $(S_{F_i})_i$ implement nuclearity:

 F_i finite support and finite rank $\implies S_{F_i}$ finite rank F_i pos.-def. Herz-Schur, $\|F_i(e)\|_{cb} \leq 1 \implies S_{F_i}$ contractive comp. pos. $\|F_i(r)(a) - a\| \to 0 \implies S_{F_i} \to id$

(ii) \Longrightarrow (i) If $(\Phi_i)_i$ implement nuclearity of $A \rtimes_{\alpha,r} G$ then define $F_i(r)(a) := \mathcal{E}(\Phi_i(a\lambda_r)\lambda_r^*).$

Here is an example of option 1 above.

Theorem (Anantharaman-Delaroche, Brown–Ozawa)

 (A, G, α) a C*-dynamical system, such that α is an amenable action. A unital. If A is nuclear then $A \rtimes_{\alpha,r} G$ is nuclear.

Here is an example of **option 1** above.

Theorem (Anantharaman-Delaroche, Brown–Ozawa)

 (A, G, α) a C*-dynamical system, such that α is an amenable action. A unital. If A is nuclear then $A \rtimes_{\alpha,r} G$ is nuclear.

Proof (MSTT).

G acts amenably means there are $(T_i : G \to Z(A)^+)_i$ finitely supported, $\sum_{r \in G} T_i(r)^2 = 1_A$, and for each $t \in G$

$$\left\|\sum_{r\in G} (T_i(r) - \alpha_t(T_i(t^{-1}r)))^*(T_i(r) - \alpha_t(T_i(t^{-1}r)))\right\| \to 0.$$

Here is an example of **option 1** above.

Theorem (Anantharaman-Delaroche, Brown–Ozawa)

 (A, G, α) a C*-dynamical system, such that α is an amenable action. A unital. If A is nuclear then $A \rtimes_{\alpha,r} G$ is nuclear.

Proof (MSTT).

G acts amenably means there are $(T_i : G \to Z(A)^+)_i$ finitely supported, $\sum_{r \in G} T_i(r)^2 = 1_A$, and for each $t \in G$

$$\left\|\sum_{r\in G} (T_i(r) - \alpha_t(T_i(t^{-1}r)))^*(T_i(r) - \alpha_t(T_i(t^{-1}r)))\right\| \to 0.$$

Let $(\Phi_j : A \to A)_j$ implement nuclearity of A.

Here is an example of **option 1** above.

Theorem (Anantharaman-Delaroche, Brown–Ozawa)

 (A, G, α) a C*-dynamical system, such that α is an amenable action. A unital. If A is nuclear then $A \rtimes_{\alpha,r} G$ is nuclear.

Proof (MSTT).

G acts amenably means there are $(T_i : G \to Z(A)^+)_i$ finitely supported, $\sum_{r \in G} T_i(r)^2 = 1_A$, and for each $t \in G$

$$\left\|\sum_{r\in G} (T_i(r) - \alpha_t(T_i(t^{-1}r)))^*(T_i(r) - \alpha_t(T_i(t^{-1}r)))\right\| \to 0.$$

Let $(\Phi_j : A \to A)_j$ implement nuclearity of A. Define

$$F_{i,j}(r)(a) := \sum_{p \in G} T_i(p) \alpha_p(\Phi_j(\alpha_{p^{-1}}(a))) \alpha_r(T_i(r^{-1}p)),$$

Herz–Schur (A, G, α) multipliers satisfying the above Theorem.

Schur multipliers

Definition (MTT) $\varphi: G \times G \rightarrow CB(A)$ is a Schur A-multiplier if the following map is completely bounded.

 $S_{\varphi}: \mathcal{K}(\ell^{2}(G)) \otimes A \rightarrow \mathcal{K}(\ell^{2}(G)) \otimes A; \ (S_{\varphi}(T))_{s,t} := \varphi(s,t)(T_{s,t})$

Schur multipliers

Definition (MTT) $\varphi: G \times G \rightarrow CB(A)$ is a Schur A-multiplier if the following map is completely bounded.

$$S_{\varphi}: \mathcal{K}(\ell^{2}(G)) \otimes A
ightarrow \mathcal{K}(\ell^{2}(G)) \otimes A; \ (S_{\varphi}(T))_{s,t} := \varphi(s,t)(T_{s,t})$$

Theorem (MTT)

- $\varphi: G \times G \rightarrow C\mathcal{B}(A)$. The following are equivalent:
 - i. φ is a Schur A-multiplier;
 - ii. $\varphi(s,t)(a) = W(s)^* \rho(a) V(t)$, where $\rho : A \to \mathcal{B}(\mathcal{H}_{\rho})$ is a representation and $V, W : G \to \mathcal{B}(\mathcal{H}, \mathcal{H}_{\rho})$ are bounded.

Moreover, S_{φ} is completely positive if and only if V = W.

Schur multipliers

Definition (MTT) $\varphi: G \times G \rightarrow CB(A)$ is a Schur A-multiplier if the following map is completely bounded.

$$S_{\varphi}: \mathcal{K}(\ell^{2}(G)) \otimes A \to \mathcal{K}(\ell^{2}(G)) \otimes A; \ (S_{\varphi}(T))_{s,t} := \varphi(s,t)(T_{s,t})$$

Theorem (MTT)

$$\varphi: G \times G \rightarrow C\mathcal{B}(A)$$
. The following are equivalent:

i. φ is a Schur A-multiplier;

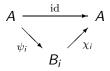
ii. $\varphi(s,t)(a) = W(s)^* \rho(a) V(t)$, where $\rho : A \to \mathcal{B}(\mathcal{H}_{\rho})$ is a representation and $V, W : G \to \mathcal{B}(\mathcal{H}, \mathcal{H}_{\rho})$ are bounded.

Moreover, S_{φ} is completely positive if and only if V = W.

Note: *F* is a Herz–Schur (*A*, *G*, α)-multiplier if and only if $\mathcal{N}(F)(s, t)(a) := \alpha_{s^{-1}}(F(st^{-1})(\alpha_s(a)))$ is a Schur *A*-multiplier.

Exactness

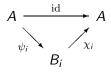
Nuclearity can also be viewed as existence of an **approximate** factorisation of the identity map $id : A \rightarrow A$:



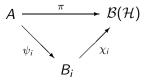
 B_i finite-dimensional, ψ_i, χ_i contractive comp. pos., $\chi_i \circ \psi_i \rightarrow id$.

Exactness

Nuclearity can also be viewed as existence of an **approximate** factorisation of the identity map $id : A \rightarrow A$:



 B_i finite-dimensional, ψ_i, χ_i contractive comp. pos., $\chi_i \circ \psi_i \rightarrow \text{id.}$ A is exact if there is a faithful representation $\pi : A \rightarrow \mathcal{B}(\mathcal{H})$ which has an **approximate factorisation**:



 B_i finite-dimensional, ψ_i, χ_i contractive comp. pos., $\chi_i \circ \psi_i \to id$.

We can use Schur multipliers to characterise exactness of $A \rtimes_{\alpha,r} G$.

We can use Schur multipliers to characterise exactness of $A \rtimes_{\alpha,r} G$. Theorem (MT)

 (A, G, α) a C*-dynamical system, G discrete. TFAE:

i. there are (positive) Schur A-multipliers $(\varphi_i)_i$ such that:

a. sup_i ||φ_i||_☉ ≤ ∞; b. φ_i supported on {(s,t) : st⁻¹ ∈ K_i a finite set}; c. ||φ_i(s,t)(α_{s-1}(a)) - α_{s-1}(a)|| → 0 uniformly on a strip (a ∈ A); d. the space {φ_i(s,r⁻¹s)(α_{s-1}(a)) : a ∈ A, s,t ∈ G} is finite-dimensional;

ii. $A \rtimes_{\alpha,r} G$ is exact.

The $(S_{\varphi_i})_i$ give external approximations of $A \rtimes_{\alpha,r} G$: they do not preserve the **diagonal pattern**.

Exactness and nuclearity

We can prove Ozawa's result on exactness of discrete groups.

Theorem (Ozawa '00)

G discrete group. The following are equivalent:

- i. $C_r^*(G)$ is exact;
- ii. the uniform Roe algebra $\ell^{\infty}(G) \rtimes_{\beta,r} G$ is nuclear.

Exactness and nuclearity

We can prove Ozawa's result on exactness of discrete groups.

Theorem (Ozawa '00)

G discrete group. The following are equivalent:

- i. $C_r^*(G)$ is exact;
- ii. the uniform Roe algebra $\ell^{\infty}(G) \rtimes_{\beta,r} G$ is nuclear.

Proof (MT).

(ii) \Longrightarrow (i) is trivial because $C_r^*(G) \subset \ell^{\infty}(G) \rtimes_{\beta,r} G$. (i) \Longrightarrow (ii) Take positive Schur multipliers $(\varphi_i : G \times G \to \mathbb{C})_i$ giving exactness. Identify with

$$\phi_i: G \to \ell^\infty(G); \ \phi_i(r)(s) := \varphi_i(s, r^{-1}s).$$

These are Herz–Schur ($\ell^{\infty}(G), G, \beta$)-multipliers which satisfy our nuclearity conditions.

Thank you for listening!