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Algebras associated to a group

Throughout G is a discrete group.
The left regular representation of G is

A: G = BI(6)): (AE)(t) = (s 1),

Several associated algebras:

» reduced group C*-algebra C;(G), realised as closure of finite
sums >, arAr (ar € C) in operator norm of B((?(G));

> group von Neumann algebra
vWN(G) = C(G)' ={)s : s € G},

» Fourier algebra A(G): Banach algebra (pointwise operations)
of coeffecients of A

v:G = C; v(s) = (\&,n) for some &, 1 € £2(G).

We have A(G)* = vN(G).
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matrices over C indexed by G x G:

T € B({?(G)), Tst:=(T6:,05) € C.



It is often useful for us to think of operators in B(¢2(G)) as
matrices over C indexed by G x G:

T € B({?(G)), Tst:=(T6:,05) € C.

The matrix of x € CJ(G) is constant down the diagonals. This
means that xs ; depends only on st 1.

The functional x — (xde,de) = Xe is a tracial state on C}(G),

acting by
Z arAr = ae.
reG
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A discrete group G is amenable if and only if C}(G) is nuclear.

Proof.
Amenable groups have a net of finitely supported, positive-definite,
Herz—Schur multipliers approximating the constant function 1. [
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Herz—Schur multipliers
A Herz—Schur multiplier is a function v : G — C such that

Su: CHG) — C( (Z ar\ ) = u(rac
reG reG
is completely bounded. Characterisation: u(st™1) = (V(s), W(t)).
Proof (Lance).
Let (uj : G — C); be the finitely supported, normalised

positive-definite functions approximating the constant function 1,
from amenability of G. Viewing (u;); as Herz—Schur multipliers:

u; finite support = S, finite rank
u; normalised pos.-def. Herz=Schur = S, contractive comp. pos.
u; — 1 pointwise = 5,, — id point-norm

Conversely, if (®;); implement nuclearity of C;(G) define

ui: G = C; ui(r) .= (Pi(Ar)A e, de) - O
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Haagerup programme: Use Herz—Schur multipliers as Lance did to
link properties of G and C}(G) (or vN(G)).
Lance's proof:

u; finite support = S, finite rank
u; normalised pos.-def. Herz=Schur = S, contractive comp. pos.
u; — 1 pointwise = S,, — id point-norm

Haagerup's idea: adjust the conditions on the u; and see what
properties of C;(G) the S, implement.
Examples:
> weak amenability forget about positivity condition (just keep
uniform boundedness), gives CBAP of C/(G);

» Haagerup property require Co(G) positive-definite functions.
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There are several other properties in the same vein: weak
Haagerup property, the AP, ...
Interesting consequences:

> free groups are the best-known non-amenable groups, but s
is not too bad — it is weakly amenable and has Haagerup
property.

» C(F2) is not nuclear (Lance), but as F is weakly amenable
this C*-algebra has the CBAP, and therefore Grothendieck's
MAP, answering an open question.

» Open problem: G weakly amenable with Awa(G) =1 - G
Haagerup property. (The converse is known to be false.)
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Crossed products

C}(G) is a C*-algebra which encodes information about G. Now
we introduce the reduced crossed product, which encodes an
action of G on a C*-algebra.

Action of G on a C*-algebra A is a homomorphism
a: G — Aut(A). Triple (A, G,«) is a C*-dynamical system.

From (A, G, «) we form reduced crossed product A x, , G:
finite sums ZreG arAr, ar € A, closed in operator norm of
B(?(G) @ H) (A C B(H)).

Action encoded by Asa\l = as(a). When A = C this is C(G).
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Matrix viewpoint
T € B(¢?(G) @ H) also has a matrix representation

Tsp = PsTP; € B(H), Pr:(&)s— &

The matrix of x € A X, G has a diagonal pattern.

as(xe) as(xr)
X,—1 Xe Xy

ag-1(x-1)  ag-1(xe)

The map x — X, is a conditional expectation £ : A X, , G — A,
acting by
E: Z arAr > ae.

reG
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Approximation properties of crossed products

Question: how are the approximation properties of A x4, G
related to the properties of A and G?

Guess: A is nuclear and G is amenable = A X, , G is nuclear?
Correct! But there are nuclear crossed products formed by the
action of non-amenable groups, so-called amenable actions.

Guess: A has CBAP and G is weakly amenable = A x, , G has
CBAP? Wrong! Ex: SL(2,7Z) is weakly amenable, but

7% % SL(2,7Z) is not, so C/(Z?) X4, SL(2,7Z) does not have CBAP.
Option 1 (Brown—Ozawa): develop amenable actions, show that if
G acts amenably then A x, . G has approximation property when
A does.

Option 2 (MSTT): develop Herz—Schur multipliers of dynamical
systems, then follow the Haagerup programme.
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With Todorov and Turowska we developed Herz—Schur
multipliers of a dynamical system.

Recall: v: G — C is a Herz=Schur multiplier if map is completely
bounded
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Multipliers of crossed products

With Todorov and Turowska we developed Herz—Schur
multipliers of a dynamical system.

Recall: v: G — C is a Herz=Schur multiplier if map is completely
bounded

S, : CH(G) = CHG); S, (Z ar)\,> => u(nark,, a €C.

reG reG

Definition
F: G — CB(A) is a Herz=Schur multiplier of (A, G, «) if map is
completely bounded

SF: AXa,G — Axa.,G; SF (Z ar)\r> => F(N(a)rr, a €A

reG reG

Characterisation: F is a Herz—Schur (A, G, a)-multiplier if and
only if ag-1(F(st™1)(as(a))) = W(s)*p(a)V(t). Sf completely
positive if and only if V = W.
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Haagerup programme for dynamical systems

Haagerup programme for groups:
property of G <= certain Herz=Schur mults <= property of C;(G)

We can now do the same for C*-dynamical systems:
property of (A, G, «) % Herz-Schur mults < property of A x,,, G

So far we (M., Skalski, Todorov, Turowska) have written down the
correct conditions for:

> weak amenability of (A, G,«), i.e. CBAP of A x4, G;
» nuclearity of (A, G, ), i.e. nuclearity of A %, , G;

» Haagerup property of (A, G, «), i.e. C* Haagerup property of
A Na,r G;
> AP of (A, G, ), i.e. SOAP of Axgy, G.
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(A, G,«a) a C*-dynamical system, G discrete. TFAE:
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c. ||Fi(r)(a) —a|| = 0 forall r € G,a € A.

ii. AXq,r G is nuclear.
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Theorem (MSTT '18)

(A, G,«a) a C*-dynamical system, G discrete. TFAE:
i. there are Herz=Schur (A, G, )-multipliers (F;); satisfying:
a. F; positive and ||Fi(€)|leh < 1;
b. Fi(r) finite rank, non-zero for only finitely many r € G;
c. ||Fi(r)(a) —a|| = 0 forall r € G,a € A.

ii. AXq,r G is nuclear.

Proof.
(i) = (ii) As in Lance's proof (Sf,); implement nuclearity:

F; finite support and finite rank = Sf, finite rank
F; pos.-def. Herz=Schur, ||Fi(e)||co <1 = S, contractive comp. pos.
|Fi(r)(a) —al| = 0 = Sf, — id

(i) = (i) If (®;); implement nuclearity of A X, , G then define

Fi(r)(a) := £(®i(a\)A?). O
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Amenable actions and nuclearity
Here is an example of option 1 above.
Theorem (Anantharaman-Delaroche, Brown—Ozawa)

(A, G,«) a C*-dynamical system, such that « is an amenable
action. A unital. If A is nuclear then A x4, G is nuclear.

Proof (MSTT).

G acts amenably means there are (T; : G — Z(A)™"); finitely
supported, >, Ti(r)?> =14, and for each t € G

D (Tilr) = ae( Tt ) (Tilr) — at(Tf(tlf)))H — 0.

reG

Let (®; : A— A); implement nuclearity of A. Define

Fi(n)(@) = 3 Tilp)a(®3(crp1(a))ar(Ti(rp)).

peG

Herz—Schur (A, G, @) multipliers satisfying the above Theorem.
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Schur multipliers

Definition (MTT)

w:Gx G — CB(A) is a Schur A-multiplier if the following map is
completely bounded.

Sp 1 K(E(G)) @ A — K(E2(G)) ® Ai (Sp(T))s,e := (s, £)(Ts )

Theorem (MTT)
¢ : G x G — CB(A). The following are equivalent:
i. @ is a Schur A-multiplier;
ii. ¢(s,t)(a) = W(s)"p(a)V(t), where p: A— B(H,) is a
representation and V., W : G — B(H,H,) are bounded.
Moreover, S, is completely positive if and only if V = W.

Note: F is a Herz=Schur (A, G, «)-multiplier if and only if
N(F)(s,t)(a) := as-1(F(st™1)(as(a))) is a Schur A-multiplier.
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Exactness

Nuclearity can also be viewed as existence of an approximate
factorisation of the identity map id: A — A:

id

N A

A

A

B; finite-dimensional, v);, x; contractive comp. pos., x; o ©; — id.
A is exact if there is a faithful representation 7 : A — B(#) which
has an approximate factorisation:

B; finite-dimensional, v;, x; contractive comp. pos., ;o ¥; — id.
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We can use Schur multipliers to characterise exactness of A X, G.

Theorem (MT)

(A, G,«) a C*-dynamical system, G discrete. TFAE:
i. there are (positive) Schur A-multipliers (y;); such that:

a.

sup; [[¢ille < oo;

b. ; supported on {(s, t) : st™! € K; a finite set};
c.
d. the space {pi(s,r 1s)(as-1(a)):a€ A, s,t € G} is

llpi(s, t)(as-1(a)) — as-1(a)|| — O uniformly on a strip (a € A);

finite-dimensional.:

ii. AXq,r G is exact.

The (S,,)i give external approximations of A X, , G: they do not
preserve the diagonal pattern.
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Exactness and nuclearity

We can prove Ozawa's result on exactness of discrete groups.

Theorem (Ozawa '00)
G discrete group. The following are equivalent:
i. C}(G) is exact;

ii. the uniform Roe algebra {>°(G) xg, G is nuclear.

Proof (MT).

(i) = (i) is trivial because C}(G) C £>°(G) x5, G.

(i) = (ii) Take positive Schur multipliers (¢; : G x G — C);
giving exactness. ldentify with

¢i 1 G = 12(G); ¢i(r)(s) :==i(s,r's).

These are Herz—Schur (¢°°(G), G, 3)-multipliers which satisfy our
nuclearity conditions. O



Thank you for listening!



