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Algebras associated to a group

Throughout G is a discrete group.
The left regular representation of G is

λ : G → B(ℓ2(G )); (λsξ)(t) = ξ(s−1t).

Several associated algebras:

◮ reduced group C ∗-algebra C ∗
r (G ), realised as closure of finite

sums
!

r∈G arλr (ar ∈ C) in operator norm of B(ℓ2(G ));

◮ group von Neumann algebra
vN(G ) = C ∗

r (G )′′ = {λs : s ∈ G}′′;
◮ Fourier algebra A(G ): Banach algebra (pointwise operations)

of coeffecients of λ

v : G → C; v(s) = 〈λsξ, η〉 for some ξ, η ∈ ℓ2(G ).

We have A(G )∗ = vN(G ).
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It is often useful for us to think of operators in B(ℓ2(G )) as
matrices over C indexed by G × G :

T ∈ B(ℓ2(G )), Ts,t := 〈T δt , δs〉 ∈ C.

The matrix of x ∈ C ∗
r (G ) is constant down the diagonals. This

means that xs,t depends only on st−1.

"

#######$

. . .
. . .

. . . xe xr
. . .

xr−1 xe xr
. . . xr−1 xe

. . .
. . .

. . .

%

&&&&&&&'

The functional x &→ 〈xδe , δe〉 = xe is a tracial state on C ∗
r (G ),

acting by (

r∈G
arλr &→ ae .
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Question: how are properties of G reflected in properties of
C ∗
r (G ), vN(G ), A(G )? Vice-versa?

Theorem (Lance ’74)

A discrete group G is amenable if and only if C ∗
r (G ) is nuclear.

Proof.
Amenable groups have a net of finitely supported, positive-definite,
Herz–Schur multipliers approximating the constant function 1.

Nuclearity: there exists a net of finite rank, completely positive
contractions (Φi : A → A)i with ‖Φi (a)− a‖ → 0 (a ∈ A).

Amenability: there exists a net of finitely supported, normalised
positive-definite functions (ui : G → C)i with ui → 1 pointwise.
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Herz–Schur multipliers
A Herz–Schur multiplier is a function u : G → C such that

Su : C ∗
r (G ) → C ∗

r (G ); Su

)
(

r∈G
arλr

*
=

(

r∈G
u(r)arλr

is completely bounded. Characterisation: u(st−1) = 〈V (s),W (t)〉.

Proof (Lance).

Let (ui : G → C)i be the finitely supported, normalised
positive-definite functions approximating the constant function 1,
from amenability of G . Viewing (ui )i as Herz–Schur multipliers:

ui finite support =⇒ Sui finite rank

ui normalised pos.-def. Herz–Schur =⇒ Sui contractive comp. pos.

ui → 1 pointwise =⇒ Sui → id point-norm

Conversely, if (Φi )i implement nuclearity of C ∗
r (G ) define

ui : G → C; ui (r) := 〈Φi (λr )λ
∗
r δe , δe〉 .



Herz–Schur multipliers
A Herz–Schur multiplier is a function u : G → C such that

Su : C ∗
r (G ) → C ∗

r (G ); Su

)
(

r∈G
arλr

*
=

(

r∈G
u(r)arλr

is completely bounded. Characterisation: u(st−1) = 〈V (s),W (t)〉.

Proof (Lance).

Let (ui : G → C)i be the finitely supported, normalised
positive-definite functions approximating the constant function 1,
from amenability of G . Viewing (ui )i as Herz–Schur multipliers:

ui finite support =⇒ Sui finite rank

ui normalised pos.-def. Herz–Schur =⇒ Sui contractive comp. pos.

ui → 1 pointwise =⇒ Sui → id point-norm

Conversely, if (Φi )i implement nuclearity of C ∗
r (G ) define

ui : G → C; ui (r) := 〈Φi (λr )λ
∗
r δe , δe〉 .



Herz–Schur multipliers
A Herz–Schur multiplier is a function u : G → C such that

Su : C ∗
r (G ) → C ∗

r (G ); Su

)
(

r∈G
arλr

*
=

(

r∈G
u(r)arλr

is completely bounded. Characterisation: u(st−1) = 〈V (s),W (t)〉.

Proof (Lance).

Let (ui : G → C)i be the finitely supported, normalised
positive-definite functions approximating the constant function 1,
from amenability of G . Viewing (ui )i as Herz–Schur multipliers:

ui finite support =⇒ Sui finite rank

ui normalised pos.-def. Herz–Schur =⇒ Sui contractive comp. pos.

ui → 1 pointwise =⇒ Sui → id point-norm

Conversely, if (Φi )i implement nuclearity of C ∗
r (G ) define

ui : G → C; ui (r) := 〈Φi (λr )λ
∗
r δe , δe〉 .



Herz–Schur multipliers
A Herz–Schur multiplier is a function u : G → C such that

Su : C ∗
r (G ) → C ∗

r (G ); Su

)
(

r∈G
arλr

*
=

(

r∈G
u(r)arλr

is completely bounded. Characterisation: u(st−1) = 〈V (s),W (t)〉.

Proof (Lance).

Let (ui : G → C)i be the finitely supported, normalised
positive-definite functions approximating the constant function 1,
from amenability of G . Viewing (ui )i as Herz–Schur multipliers:

ui finite support =⇒ Sui finite rank

ui normalised pos.-def. Herz–Schur =⇒ Sui contractive comp. pos.

ui → 1 pointwise =⇒ Sui → id point-norm

Conversely, if (Φi )i implement nuclearity of C ∗
r (G ) define

ui : G → C; ui (r) := 〈Φi (λr )λ
∗
r δe , δe〉 .



Haagerup programme: Use Herz–Schur multipliers as Lance did to
link properties of G and C ∗

r (G ) (or vN(G )).

Lance’s proof:

ui finite support =⇒ Sui finite rank

ui normalised pos.-def. Herz–Schur =⇒ Sui contractive comp. pos.

ui → 1 pointwise =⇒ Sui → id point-norm

Haagerup’s idea: adjust the conditions on the ui and see what
properties of C ∗

r (G ) the Sui implement.
Examples:

◮ weak amenability forget about positivity condition (just keep
uniform boundedness), gives CBAP of C ∗

r (G );

◮ Haagerup property require C0(G ) positive-definite functions.
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There are several other properties in the same vein: weak
Haagerup property, the AP, ...
Interesting consequences:

◮ free groups are the best-known non-amenable groups, but F2

is not too bad — it is weakly amenable and has Haagerup
property.

◮ C ∗
r (F2) is not nuclear (Lance), but as F2 is weakly amenable

this C ∗-algebra has the CBAP, and therefore Grothendieck’s
MAP, answering an open question.

◮ Open problem: G weakly amenable with ΛWA(G ) = 1
?

=⇒ G
Haagerup property. (The converse is known to be false.)
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Crossed products

C ∗
r (G ) is a C ∗-algebra which encodes information about G . Now

we introduce the reduced crossed product, which encodes an
action of G on a C ∗-algebra.

Action of G on a C ∗-algebra A is a homomorphism
α : G → Aut(A). Triple (A,G ,α) is a C ∗-dynamical system.

From (A,G ,α) we form reduced crossed product A⋊α,r G :
finite sums

!
r∈G arλr , ar ∈ A, closed in operator norm of

B(ℓ2(G )⊗H) (A ⊆ B(H)).

Action encoded by λsaλ
∗
s = αs(a). When A = C this is C ∗

r (G ).
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Matrix viewpoint
T ∈ B(ℓ2(G )⊗H) also has a matrix representation

Ts,t := PsTP
∗
t ∈ B(H), Pr : (ξs)s &→ ξr .

The matrix of x ∈ A⋊α,r G has a diagonal pattern.

"

#######$

. . .
. . .

. . . αs(xe) αs(xr )
. . .

xr−1 xe xr
. . . αs−1(xr−1) αs−1(xe)

. . .
. . .

. . .

%

&&&&&&&'

The map x &→ xe is a conditional expectation E : A⋊α,r G → A,
acting by

E :
(

r∈G
arλr &→ ae .
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Approximation properties of crossed products

Question: how are the approximation properties of A⋊α,r G
related to the properties of A and G?

Guess: A is nuclear and G is amenable =⇒ A⋊α,r G is nuclear?
Correct! But there are nuclear crossed products formed by the
action of non-amenable groups, so-called amenable actions.

Guess: A has CBAP and G is weakly amenable =⇒ A⋊α,r G has
CBAP? Wrong! Ex: SL(2,Z) is weakly amenable, but
Z2⋊ SL(2,Z) is not, so C ∗

r (Z2)⋊α,r SL(2,Z) does not have CBAP.

Option 1 (Brown–Ozawa): develop amenable actions, show that if
G acts amenably then A⋊α,r G has approximation property when
A does.
Option 2 (MSTT): develop Herz–Schur multipliers of dynamical
systems, then follow the Haagerup programme.
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Multipliers of crossed products
With Todorov and Turowska we developed Herz–Schur
multipliers of a dynamical system.
Recall: u : G → C is a Herz–Schur multiplier if map is completely
bounded

Su : C ∗
r (G ) → C ∗

r (G ); Su

)
(

r∈G
arλr

*
=

(

r∈G
u(r)arλr , ar ∈ C.

Definition
F : G → CB(A) is a Herz–Schur multiplier of (A,G ,α) if map is
completely bounded

SF : A⋊α,rG → A⋊α,rG ; SF

)
(

r∈G
arλr

*
=

(

r∈G
F (r)(ar )λr , ar ∈ A.

Characterisation: F is a Herz–Schur (A,G ,α)-multiplier if and
only if αs−1(F (st−1)(αs(a))) = W (s)∗ρ(a)V (t). SF completely
positive if and only if V = W .
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Haagerup programme for dynamical systems

Haagerup programme for groups:

property of G ⇐⇒ certain Herz–Schur mults ⇐⇒ property of C ∗
r (G )

We can now do the same for C ∗-dynamical systems:

property of (A,G ,α)
def⇔ Herz–Schur mults ⇔ property of A⋊α,r G

So far we (M., Skalski, Todorov, Turowska) have written down the
correct conditions for:

◮ weak amenability of (A,G ,α), i.e. CBAP of A⋊α,r G ;

◮ nuclearity of (A,G ,α), i.e. nuclearity of A⋊α,r G ;

◮ Haagerup property of (A,G ,α), i.e. C ∗ Haagerup property of
A⋊α,r G ;

◮ AP of (A,G ,α), i.e. SOAP of A⋊α,r G .
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Theorem (MSTT ’18)

(A,G ,α) a C ∗-dynamical system, G discrete. TFAE:

i. there are Herz–Schur (A,G ,α)-multipliers (Fi )i satisfying:

a. Fi positive and ‖Fi (e)‖cb ≤ 1;
b. Fi (r) finite rank, non-zero for only finitely many r ∈ G;
c. ‖Fi (r)(a)− a‖ → 0 for all r ∈ G , a ∈ A.

ii. A⋊α,r G is nuclear.

Proof.
(i) =⇒ (ii) As in Lance’s proof (SFi

)i implement nuclearity:

Fi finite support and finite rank =⇒ SFi
finite rank

Fi pos.-def. Herz–Schur, ‖Fi (e)‖cb ≤ 1 =⇒ SFi
contractive comp. pos.

‖Fi (r)(a)− a‖ → 0 =⇒ SFi
→ id

(ii) =⇒ (i) If (Φi )i implement nuclearity of A⋊α,r G then define

Fi (r)(a) := E
+
Φi (aλr )λ

∗
r

,
.
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Amenable actions and nuclearity
Here is an example of option 1 above.

Theorem (Anantharaman-Delaroche, Brown–Ozawa)

(A,G ,α) a C ∗-dynamical system, such that α is an amenable
action. A unital. If A is nuclear then A⋊α,r G is nuclear.

Proof (MSTT).

G acts amenably means there are (Ti : G → Z (A)+)i finitely
supported,

!
r∈G Ti (r)

2 = 1A, and for each t ∈ G

-----
(

r∈G
(Ti (r)− αt(Ti (t

−1r)))∗(Ti (r)− αt(Ti (t
−1r)))

----- → 0.

Let (Φj : A → A)j implement nuclearity of A. Define

Fi ,j(r)(a) :=
(

p∈G
Ti (p)αp(Φj(αp−1(a)))αr (Ti (r

−1p)),

Herz–Schur (A,G ,α) multipliers satisfying the above Theorem.
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Schur multipliers

Definition (MTT)

ϕ : G × G → CB(A) is a Schur A-multiplier if the following map is
completely bounded.

Sϕ : K(ℓ2(G ))⊗ A → K(ℓ2(G ))⊗ A; (Sϕ(T ))s,t := ϕ(s, t)(Ts,t)

Theorem (MTT)

ϕ : G × G → CB(A). The following are equivalent:

i. ϕ is a Schur A-multiplier;

ii. ϕ(s, t)(a) = W (s)∗ρ(a)V (t), where ρ : A → B(Hρ) is a
representation and V ,W : G → B(H,Hρ) are bounded.

Moreover, Sϕ is completely positive if and only if V = W.

Note: F is a Herz–Schur (A,G ,α)-multiplier if and only if
N (F )(s, t)(a) := αs−1(F (st−1)(αs(a))) is a Schur A-multiplier.
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Exactness

Nuclearity can also be viewed as existence of an approximate
factorisation of the identity map id : A → A:

A A

Bi

✲id

❅❅❘ψi $$✒χi

Bi finite-dimensional, ψi ,χi contractive comp. pos., χi ◦ ψi → id.

A is exact if there is a faithful representation π : A → B(H) which
has an approximate factorisation:

A B(H)

Bi

✲π

❅
❅❅❘ψi $

$$✒
χi

Bi finite-dimensional, ψi ,χi contractive comp. pos., χi ◦ ψi → id.
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We can use Schur multipliers to characterise exactness of A⋊α,r G .

Theorem (MT)

(A,G ,α) a C ∗-dynamical system, G discrete. TFAE:

i. there are (positive) Schur A-multipliers (ϕi )i such that:

a. supi ‖ϕi‖S ≤ ∞;
b. ϕi supported on {(s, t) : st−1 ∈ Ki a finite set};
c. ‖ϕi (s, t)(αs−1(a))− αs−1(a)‖ → 0 uniformly on a strip (a ∈ A);
d. the space {ϕi (s, r

−1s)(αs−1(a)) : a ∈ A, s, t ∈ G} is
finite-dimensional;

ii. A⋊α,r G is exact.

The (Sϕi )i give external approximations of A⋊α,r G : they do not
preserve the diagonal pattern.
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Exactness and nuclearity

We can prove Ozawa’s result on exactness of discrete groups.

Theorem (Ozawa ’00)

G discrete group. The following are equivalent:

i. C ∗
r (G ) is exact;

ii. the uniform Roe algebra ℓ∞(G )⋊β,r G is nuclear.

Proof (MT).

(ii) =⇒ (i) is trivial because C ∗
r (G ) ⊂ ℓ∞(G )⋊β,r G .

(i) =⇒ (ii) Take positive Schur multipliers (ϕi : G × G → C)i
giving exactness. Identify with

φi : G → ℓ∞(G ); φi (r)(s) := ϕi (s, r
−1s).

These are Herz–Schur (ℓ∞(G ),G ,β)-multipliers which satisfy our
nuclearity conditions.
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Thank you for listening!


