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Groupoids

X locally compact Hausdorff topological space.

G topological groupoid on X ⊆ G:
▶ set G of arrows X → X ;

▶ maps domain d : G → X and range r : G → X ;

▶ for γ, η ∈ G composition γη when d(γ) = r(η);

▶ inverse γ−1 for each γ ∈ G;
▶ X ⊆ G as units;

▶ topology on G making operations continuous.

Assumption: G is étale: d and r local homeomorphisms.

Topology on G is not necessarily Hausdorff.



Example: Discrete group action h : G → Homeo(X ): G = X × G ,

X ∼= {(x , e) : x ∈ X}, d(x , s) := x , r(x , s) := hs(x),

product (hs(x), t)(x , s) := (x , ts), inverse (x , s)−1 := (hs(x), s
−1).

Example: Inverse semigroup action h : S → PHomeo(X ).

▶ S inverse semigroup: semigroup S (set with assoc. binary op);

▶ every s ∈ S has unique generalised inverse s∗ ∈ S : ss∗s = s,
s∗ss∗ = s∗;

▶ a partial homeomorphism on X is a homeomorphism
between open subsets of X : h : d(h) → r(h);

▶ partial homeomorphisms on X is inverse semigroup
PHomeo(X ): composition on suitable domain, h∗ := h−1;

▶ action of S on X is semigroup homomorphism
h : S → PHomeo(X ); ht : Xt∗ → Xt ;

▶ copy groupoid structure from previous example (+ quotient).

Note: Similarly inverse semigroup action on other objects by
partial isomorphisms.



G a groupoid on X .

A bisection of G is open set U ⊆ G such that r |U , d |U injective.

Example: G = X ⋊h G then we have bisections Ut = X × {t},
t ∈ G .

Set of bisections Bis(G) is an inverse semigroup:

UV := {γη : γ ∈ U, η ∈ V }, U∗ := {γ−1 : γ ∈ U}.

Get an inverse semigroup action h : Bis(G) → PHomeo(X ):

hU : d(U) → r(U); hU := r ◦ d |−1
U .

Example (continued): G = X ⋊h G then hUt = ht .

Inverse semigroup action h : S → PHomeo(X ) ⇝ groupoid Gh.
Groupoid G ⇝ inv. semigroup action hG : Bis(G) → PHomeo(X ).
In particular G ∼= X ⋊ Bis(G).



Groupoid algebras

▶ Well-developed theory of groupoid C ∗-algebras;

▶ some other Banach algebras e.g. groupoid Lp-operator
algebras and crossed product Banach algebras.

Goal: General construction of Banach algebra associated to G; has
the above as special cases.

Cover: twisted étale groupoid, not necessarily Hausdorff, R- or
C-algebras, normed by family of representations.

Simplifications: no twist, only C-algebras, Hausdorff groupoids, no
choice of bisections.



G an étale groupoid with unit space X .

Cc(G) := span
{
f ∈ Cc(U) : U ∈ Bis(G)

}
is a ∗-algebra with operations

(f ∗ g)(γ) :=
∑

η1η2=γ

f (η1)g(η2), f ∗(γ) := f (γ−1).

Existing norms on Cc(G):

∥f ∥L1 := max
x∈X

∑
d(γ)=x

∣∣f (γ)∣∣, ∥f ∥L∞ := max
x∈X

∑
r(γ)=x

∣∣f (γ)∣∣,
∥f ∥I := max

{
∥f ∥L1 , ∥f ∥L∞

}
.

(Traditionally: a representation of Cc(G) is a ∥ · ∥I -contractive
homomorphism...)



Recall that f ∈ Cc(G), so f =
∑

U∈Bis(G) fU , where fU ∈ Cc(U).

Observation: the above norms all agree with supremum norm
∥ · ∥∞ on each fU .

Lemma (BKM)

There is a maximal submultiplicative involutive norm ∥ · ∥max on
Cc(G) which agrees with supremum norm ∥ · ∥∞ on each fU ,
U ∈ Bis(G): for f ∈ Cc(G)

∥f ∥max := inf

{
n∑

k=1

∥fUk
∥∞ : f =

n∑
k=1

fUk
, fk ∈ Cc(Uk), Uk ∈ Bis(G)

}
.

∥f ∥∞ ≤ ∥f ∥L1 , ∥f ∥L∞ ≤ ∥f ∥I ≤ ∥f ∥max

Definition (BKM)

The groupoid Banach algebra of G is F (G) := Cc(G)
∥·∥max

.

This is a Banach ∗-algebra.



Representations

A representation of F (G):
▶ in a Banach algebra B is a contractive homomorphism

F (G) → B;

▶ on a Banach space E is a contractive homomorphism
F (G) → B(E ).

Definition
If r is a family of representations of F (G) then define

F r(G) := Cc(G)
∥·∥r

, where ∥f ∥r := sup
ψ∈r

∥ψ(f )∥.

Examples:

▶ r = {representations in B(H)} ⇝ F r(G) = C ∗
max(G);

▶ ▷ r = {representations in B(Lp(µ))} ⇝ F r(G) = F p(G);
▷ r = {Λp : Cc(G) → B(Lp(G))} ⇝ F r(G) = F p

r (G).



Now what?

Question: Now we constructed F r(G), why is it useful?

I will try to convince you by showing several ways the construction
reflects underlying data:

▶ underlying inverse semigroup action and representation theory;

▶ groupoid Lp-operator algebras;

▶ simplicity criteria for F r(G) reflected in G.



Representations and inverse semigroup actions

Recall: G ∼= X ⋊h S for inverse semigroup action S = Bis(G):

h : S → PHomeo(X ); ht : Xt∗ → Xt ,

where Xs ⊆ X open.

Hence: inverse semigroup action

ĥ : S → PAut(C0(X )); ĥt : C0(Xt∗) → C0(Xt),

given by
(
ĥt(ϕ)

)
(x) := ϕ

(
h−1
t (x)

)
where C0(Xs) ⊴ C0(X ).

Sieben and Buss–Exel: crossed product C ∗-algebras built from this
data: completions of
L1(ĥ) := {f ∈ L1(S ,C0(X )) : f (t) ∈ C0(Xt∗)} with product

(f ∗ g)(r) :=
∑
st=r

ĥs
(
ĥs∗

(
f (s)

)
g(t)

)
.



Definition
ĥ : S → PAut(C0(X )). A covariant representation of ĥ in B is
(π, v) where

π : C0(X ) → B a representation and v : S → (B ′′)1 a map,

i. vtπ(a) = π
(
ĥt(a)

)
vt , (a ∈ C0(Xt∗));

ii. π(a)vsvt = π(a)vst , (a ∈ C0(Xst));

iii. π(a)ve = π(a), (e ∈ E (S), a ∈ C0(Xe));

iv. normalisation: vt = limi π(ei )vt , ((ei )i approx. unit C0(Xt)).

Technical notes:

▶ in general vt ∈ B1 is too restrictive, we need the bidual;

▶ normalisation condition is equivalent to requiring each vt is a
partial isometry, we can always add it;

▶ need to sort out relationship between vt∗ and (vt)
∗;

▶ other normalisation: B is a dual Banach algebra;

▶ representations on Banach space E vs representations in B(E ).



Covariant representations integrate to representations of L1(ĥ) in
usual way:

(π, v) covariant, f ∈ L1(ĥ)⇝ π ⋊ v(f ) :=
∑
t∈S

π
(
f (t)

)
vt .

Definition (BKM)

ĥ : S → PAut(C0(X )) inverse semigroup action. r a collection of
covariant representations of ĥ. Define r-crossed product as

C0(X )⋊r
ĥ
S := L1(ĥ)

∥·∥r
, where ∥f ∥r := sup

(π,v)∈r
∥π ⋊ v(f )∥.



In particular r all covariant representations gives universal crossed
product C0(X )⋊ĥ S .

Theorem (BKM)

G ∼= X ⋊h S. There is a bijective correspondence between:

▶ representations ψ : F (G) → B;

▶ normalised covariant representations (π, v) of ĥ in B.

The correspondence is ψ(atδt) ↭ π(at)vt (at ∈ Cc(Xt)).

Hence F (G) ∼= C0(X )⋊ĥ S . More generally

F r(G) ∼= C0(X )⋊r
ĥ
S

where r all representations in B(E ).



Groupoid Lp-algebras

Previously studied by Gardella–Lupini, Choi–Gardella–Thiel,
Hetland–Ortega, Phillips.

Definition (BKM)

p ∈ [1,+∞]. Define the full groupoid Lp-operator algebra by

F p(G) := F r(G),

where r is class of representations in B(Lp(µ)), µ localisable.

Note: above is specific to C-algebras; for R-algebras need to
modify.

This definition matches existing one of Gardella–Lupini.



We have seen that underlying representations of F (G) are covariant
representations of the inverse semigroup action C0(X )⋊ĥ S .

In Lp case there are two types of data underlying this:
▶ spatial partial isometries (Phillips);
▶ Lp-partial isometries.

Underlying (Ω,Σ, µ) is Boolean algebra [Σ] — identify null sets.
A set isomorphism is Φ : Σ → Σ which descends to an
isomorphism of Boolean algebras [Φ] : [Σ] → [Σ]. Subspace of
(Ω,Σ, µ) is (D,Σ ∩ D, µ|D), hence partial set automorphism.
If Φ partial set automorphism then we get invertible partial map

TΦ : Lp(µ) → Lp(µ); TΦ(1C ) = 1Φ(C).

Definition (Phillips)

A spatial partial isometry is

UΦ :=

(
dµ ◦ Φ∗

dµ

)1/p

TΦ, UΦ ∈ PAut(Lp(µ)).



E Banach space, p ∈ [1,∞]. An Lp-projection on E is P ∈ B(E )
with:

P2 = P,

{
∥ξ∥p = ∥Pξ∥p + ∥(I − P)ξ∥p p <∞;

∥ξ∥ = max
{
∥Pξ∥, ∥(I − P)ξ∥

}
p = ∞.

Definition
E Banach space, p ∈ [1,∞]. An Lp-partial isometry on E is
contraction T ∈ B(E ) such that:

▶ there is contraction T ∗ ∈ B(E ) with TT ∗T = T and
T ∗TT ∗ = T ∗;

▶ T ∗T and TT ∗ are Lp-projections.

Theorem (BKM)

p ∈ [1,∞] \ {2}. Spatial partial isometries on Lp(µ) coincide with
Lp-partial isometries on Lp(µ).



Now we understand the underlying data in Lp case.

Theorem (BKM)

p ∈ (1,∞), G = X ⋊h S. Every representation of F p(G) on Lp(µ)
is a covariant representation (π, v) where:

▶ π represents C0(X ) as multiplication operators and v
represents S as spatial partial isometries, equivalently as
Lp-partial isometries, on Lp(µ);

▶ equivalently, π : C0(X ) → L∞(µ) and there is an inverse
semigroup {Φt}t∈S of partial set automorphisms such that
vt = UΦt .

Notes:

▶ Important tool is Banach–Lamperti Theorem: for
p ∈ [1,∞] \ {2} every (partial) isometry on Lp(µ) is spatial.

▶ Phillips assumed representations are spatial, we now know
this is automatic.



Simplicity

Question: When is F r(G) a simple Banach algebra?

Aim to imitate C ∗-algebraic results. For example:

Theorem (Brown–Clark–Farthing–Sims)

For Hausdorff second-countable G TFAE:

(i) G is topologically principal and minimal;

(ii) C ∗
r (G) is simple.

Note: we will replace topologically principal by topologically free
which is weaker (Kwaśniewski–Meyer).

G is called:

▶ topologically free if there is no non-empty open V ⊆ G \ X
with r |V = d |V .

▶ minimal if there is no non-trivial open U ⊆ X with d(γ) ∈ U
implies r(γ) ∈ U, γ ∈ G.



We need the reduced C ∗-algebra C ∗
r (G) here: the kernel of

Λ : C ∗(G) → C ∗
r (G) is an ideal.

C0(G) := Cc(G)
∥·∥∞

space of bounded Borel functions.

Lemma (BKM)

For reasonable F r(G) the inclusion Cc(G) ↪→ C0(G) extends to the
Renault map jr : F

r(G) → C0(G):
▶ jr is a (Cc(G), ∗)-bimodule map;

▶ ker jr is a closed ideal of F r(G).

Definition
Reasonable F r(G) is reduced if jr is injective.
F r
r (G) := F r(G)/ ker jr is a reduced groupoid Banach algebra.

This covers existing cases:

▶ reduced C ∗-algebra C ∗
r (G) (Renault);

▶ reduced LP -algebras F p
r (G) (Austad–Ortega, Phillips).



Theorem (BKM)

For Hausdorff G TFAE:

(i) G is topologically free and minimal;

(ii) every reduced reasonable F r
r (G) is simple;

(iii) F 1
r (G) or F∞

r (G) is simple;

(iv) a reduced reasonable F r0
r (G) is simple and contains C0(X ) as

a maximal abelian subalgebra.

Special cases of this result:

▶ C ∗-algebra result above;

▶ simplicity criteria for Lp-Cuntz algebras (Phillips);

▶ simplicity of Cuntz–Krieger and graph algebras
(Cortiñas–Rodriguez);

▶ crossed products by (inverse semi)group actions.



If G is non-Hausdorff we need to modify above construction.

M0(G): functions in C0(G) with meagre support.

Lemma (BKM)

For reasonable F r(G) the map Cc(G) ↪→ C0(G)/M0(G) extends to
the essential Renault map jer : F r(G) → C0(G)/M0(G):
▶ jer is a (Cc(G), ∗)-bimodule map;

▶ ker jer is a closed ideal of F r(G).

Definition
Reasonable F r(G) is essential if jer is injective.
F r
e (G) := F r(G)/ ker jer is an essential groupoid Banach algebra.

The simplicity theorem (almost — delete (iv)) works if we replace
reduced by essential.



Thank you for listening!


