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Groupoids

X locally compact Hausdorff topological space.

G topological groupoid on X C G:
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set G of arrows X — X;

maps domain d : G — X and range r : G — X;
for v,m € G composition yn when d(v) = r(n);
inverse y~1 for each v € G;

X C G as units;

topology on G making operations continuous.

Assumption: G is étale: d and r local homeomorphisms.

Topology on G is not necessarily Hausdorff.



Example: Discrete group action h: G — Homeo(X): G = X x G,
X =2 {(x,e):xe X}, d(x,s):=x, r(x,s):= hs(x),

product (hs(x), t)(x,s) := (x, ts), inverse (x,s)~ ! := (hs(x),s™1).
Example: Inverse semigroup action h: S — PHomeo(X).
» S inverse semigroup: semigroup S (set with assoc. binary op);
» every s € S has unique generalised inverse s* € §: ss*s = s,
s*ss* = s*;
» a partial homeomorphism on X is a homeomorphism
between open subsets of X: h: d(h) — r(h);

P partial homeomorphisms on X is inverse semigroup
PHomeo(X): composition on suitable domain, h* := h~1;

» action of S on X is semigroup homomorphism
h:S — PHomeo(X); h; : Xp= — Xy,

» copy groupoid structure from previous example (+ quotient).

Note: Similarly inverse semigroup action on other objects by
partial isomorphisms.



G a groupoid on X.
A bisection of G is open set U C G such that r|y, d|y injective.

Example: G = X xp G then we have bisections Uy = X x {t},
teG.

Set of bisections Bis(G) is an inverse semigroup:
UV :={m:veU neV}, U ={y1:veU}.
Get an inverse semigroup action h: Bis(G) — PHomeo(X):
hy : d(U) — r(U); hy = rod|,".

Example (continued): G = X X, G then hy, = h;.

Inverse semigroup action h: S — PHomeo(X) ~~ groupoid Gj.
Groupoid G ~~ inv. semigroup action hg : Bis(G) — PHomeo(X).
In particular G = X x Bis(G).



Groupoid algebras

» Well-developed theory of groupoid C*-algebras;

» some other Banach algebras e.g. groupoid LP-operator
algebras and crossed product Banach algebras.

Goal: General construction of Banach algebra associated to G; has
the above as special cases.

Cover: twisted étale groupoid, not necessarily Hausdorff, R- or
C-algebras, normed by family of representations.

Simplifications: no twist, only C-algebras, Hausdorff groupoids, no
choice of bisections.



G an étale groupoid with unit space X.
Cc(G) :=span{f € C(U) : U € Bis(G)}

is a x-algebra with operations

(Fxg)7) = > f(me F(y) = f(y71).
mm=yy

Existing norms on C.(G):

IFllox = max S Il = max S 1F()

d(v)=x r(y)=x
11l = max {[|£[| oz, [[Fll oo }-

(Traditionally: a representation of C.(G) is a || - ||;-contractive
homomorphism...)



Recall that f € Cc(G), so f = " yepis(g) fu, where fy € Cc(V).

Observation: the above norms all agree with supremum norm
|| - ||oo ON each fy.

Lemma (BKM)

There is a maximal submultiplicative involutive norm || - ||max on
C.(G) which agrees with supremum norm || - || on each fy,
U € Bis(G): for f € C.(G)

||| max := inf {Z o lloo: £ = fu f € C(Uk), Uk € Bis(g)} :

k=1 k=1

[Flloo < I lles 1o < 1F 1l < (1 ]lmax

Definition (BKM)
The groupoid Banach algebra of G is F(G) := @H'”max'

This is a Banach x*-algebra.



Representations

A representation of F(G):
» in a Banach algebra B is a contractive homomorphism
F(G) — B;

» on a Banach space E is a contractive homomorphism
F(G) — B(E).

Definition
If ¢ is a family of representations of F(G) then define

Fi(9) = C(9) —, where Heri:fpuepW(f)H-

Examples:
» ¢ = {representations in B(H)} ~ F(G) = Chan(G);

> > v = {representations in B(L"(u))} ~ F*(G) = FP(G);
> v ={Np 0 Ce(9) = B(LP(9))} ~ FT(9) = FP(9).



Now what?

Question: Now we constructed F*(G), why is it useful?
I will try to convince you by showing several ways the construction
reflects underlying data:
P underlying inverse semigroup action and representation theory;
» groupoid LP-operator algebras;
» simplicity criteria for F*(G) reflected in G.



Representations and inverse semigroup actions
Recall: G = X %, S for inverse semigroup action S = Bis(G):
h:S — PHomeo(X); h; : Xp= — X,
where X5 C X open.
Hence: inverse semigroup action
h: S — PAut(Go(X)): he : Co(Xe-) = Go(Xe),

given by (h())(x) := ¢(h;*(x)) where Go(Xs) < Co(X).

Sieben and Buss—Exel: crossed product C*-algebras built from this
data: completions of
LY(h) := {f € [1(S, Co(X)) : f(t) € Co(X¢+)} with product

(Fxg)(r) =D he((he (F(s))e ().

st=r



Definition A
h:S — PAut(Co(X)). A covariant representation of h in B is
(m, v) where

7 : Co(X) — B a representation and v:S — (B"); a map,

(
i. vmr(a) = ( (@)ve,  (a€ Go(Xe))s
i. m(@)vsve = m(a)vse, (a € Co(Xst)):

ii. m(a)ve =m(a), (e€ E(S), a€ Go(Xe)),

iv. normalisation: v; = lim; w(ej)ve, ((ei)i approx. unit Co(Xt)).

Technical notes:
» in general v; € By is too restrictive, we need the bidual,

» normalisation condition is equivalent to requiring each v; is a
partial isometry, we can always add it;

> need to sort out relationship between vy« and (vg)*;

v

other normalisation: B is a dual Banach algebra;

> representations on Banach space E vs representations in B(E).



Covariant representations integrate to representations of L1(h) in
usual way:

(,v) covariant, f € LY(h) ~ 7 x v(f) := Zﬂ'(f(t)) Ve.
tesS

Definition (BKM)
h: S — PAut(Co(X)) inverse semigroup action. ¢ a collection of
covariant representations of h. Define t-crossed product as

ol
Co(X) x5} S:=LY(h) , where [f|lc:= sup [ xv(f)].

mV)ET



In particular v all covariant representations gives universal crossed
product Co(X) x5 S.

Theorem (BKM)
G = X xp S. There is a bijective correspondence between:
» representations v : F(G) — B;
» normalised covariant representations (, v) of h in B.
The correspondence is Y(ar0t) «~ m(ar)ve (ar € Cc(Xt)).

Hence F(G) = Co(X) %, S. More generally
F'(G) = Go(X) %} S

where t all representations in B(E).



Groupoid LP-algebras

Previously studied by Gardella—Lupini, Choi—Gardella—Thiel,
Hetland—Ortega, Phillips.

Definition (BKM)

p € [1,400]. Define the full groupoid LP-operator algebra by
F?(9) = F(9),

where ¢ is class of representations in B(LP(u)), p localisable.

Note: above is specific to C-algebras; for R-algebras need to
modify.

This definition matches existing one of Gardella—Lupini.



We have seen that underlying representations of F(G) are covariant
representations of the inverse semigroup action Co(X) x5 S.
In LP case there are two types of data underlying this:

» spatial partial isometries (Phillips);

» [P-partial isometries.

Underlying (€2, %, i) is Boolean algebra [¥] — identify null sets.
A set isomorphism is ® : ¥ — ¥ which descends to an
isomorphism of Boolean algebras [®] : [£] — [X]. Subspace of
(Q,%,u)is (D, 2N D, pu|p), hence partial set automorphism.

If ® partial set automorphism then we get invertible partial map

To o LP(u) — LP(1); To(lc) = lo(c)-

Definition (Phillips)
A spatial partial isometry is

dpo &\ /P
Us ;:< ”dou > To, Us € PAut(LP(1)).



E Banach space, p € [1,00]. An LP-projection on E is P € B(E)
with:

p2_p {Hﬁ\" = IPEllP+ 11 = P)EIlP p < oo;
"l = max {|[Pe, (1 = P)EIl} P = oo

Definition
E Banach space, p € [1,00|. An LP-partial isometry on E is
contraction T € B(E) such that:
» there is contraction T* € B(E) with TT*T = T and
T*TT*=T%
» T*T and TT* are LP-projections.

Theorem (BKM)

p € [1,00] \ {2}. Spatial partial isometries on LP(u) coincide with
LP-partial isometries on LP(u).



Now we understand the underlying data in LP case.

Theorem (BKM)

pe€(l,00), G =X xpS. Every representation of FP(G) on LP(u)
is a covariant representation (m,v) where:

» 1w represents Co(X) as multiplication operators and v
represents S as spatial partial isometries, equivalently as
LP-partial isometries, on LP(u);

» equivalently, m: Co(X) — L*°(u) and there is an inverse

semigroup {®+};cs of partial set automorphisms such that
Ve = U¢‘t'

Notes:

» Important tool is Banach—Lamperti Theorem: for
p € [1,00] \ {2} every (partial) isometry on LP(u) is spatial.

> Phillips assumed representations are spatial, we now know
this is automatic.



Simplicity
Question: When is F*(G) a simple Banach algebra?

Aim to imitate C*-algebraic results. For example:

Theorem (Brown—Clark—Farthing—Sims)
For Hausdorff second-countable G TFAE:
(i) G is topologically principal and minimal;
(i) Cr(G) is simple.

Note: we will replace topologically principal by topologically free
which is weaker (Kwasniewski-Meyer).

G is called:

> topologically free if there is no non-empty open V C G\ X
with r|\/ = d|\/.

» minimal if there is no non-trivial open U C X with d(y) € U
implies r(v) € U, v € G.



We need the reduced C*-algebra C;(G) here: the kernel of
A C*G) — CF(G) is an ideal.

G(9) = Cc(g)”'”"" space of bounded Borel functions.

Lemma (BKM)

For reasonable F*(G) the inclusion C.(G) — Co(G) extends to the
Renault map j; : F*(G) — Go(9):

» ji is a (Cc(G), x)-bimodule map;
> ker j. is a closed ideal of F*(G).

Definition
Reasonable F*(G) is reduced if j; is injective.
FX(G) := F*(G)/ ker ji is a reduced groupoid Banach algebra.
This covers existing cases:
» reduced C*-algebra C;(G) (Renault);
> reduced LP-algebras FP(G) (Austad—Ortega, Phillips).



Theorem (BKM)
For Hausdorff G TFAE:
(i) G is topologically free and minimal;
(ii) every reduced reasonable F}(G) is simple;
(i) F}G) or F(G) is simple;
)

(iv) a reduced reasonable F'°(G) is simple and contains Cy(X) as
a maximal abelian subalgebra.

Special cases of this result:
> (*-algebra result above;
» simplicity criteria for LP-Cuntz algebras (Phillips);
» simplicity of Cuntz—Krieger and graph algebras
(Cortifias—Rodriguez);

» crossed products by (inverse semi)group actions.



If G is non-Hausdorff we need to modify above construction.

Mo(G): functions in Co(G) with meagre support.

Lemma (BKM)

For reasonable F*(G) the map C.(G) — Co(G)/Mo(G) extends to
the essential Renault map ¢ : F5(G) — Co(G)/Mo(9):

> j¢is a (Cc(G),*)-bimodule map;
» ker ¢ is a closed ideal of F*(G).

Definition
Reasonable F*(G) is essential if j¢ is injective.
Fi(G) := F*(G)/ ker j& is an essential groupoid Banach algebra.

The simplicity theorem (almost — delete (iv)) works if we replace
reduced by essential.



Thank you for listening!



