Groupoid Banach algebras

Andrew McKee with K Bardadyn and B Kwaśniewski

NANCGS

February 2024

Groupoids

X locally compact Hausdorff topological space.

- \mathcal{G} topological groupoid on $X \subseteq \mathcal{G}$:
 - set \mathcal{G} of arrows $X \to X$;
 - maps **domain** $d : \mathcal{G} \to X$ and **range** $r : \mathcal{G} \to X$;
 - for $\gamma, \eta \in \mathcal{G}$ composition $\gamma \eta$ when $d(\gamma) = r(\eta)$;

• inverse
$$\gamma^{-1}$$
 for each $\gamma \in \mathcal{G}$;

- $X \subseteq \mathcal{G}$ as **units**;
- topology on \mathcal{G} making operations continuous.

Assumption: G is étale: d and r local homeomorphisms.

Topology on \mathcal{G} is **not** necessarily Hausdorff.

Example: Discrete group action $h : G \to \operatorname{Homeo}(X)$: $\mathcal{G} = X \times G$,

$$X \cong \{(x,e): x \in X\}, \quad d(x,s):=x, \quad r(x,s):=h_s(x),$$

product $(h_s(x), t)(x, s) := (x, ts)$, inverse $(x, s)^{-1} := (h_s(x), s^{-1})$.

Example: Inverse semigroup action $h : S \to \text{PHomeo}(X)$.

- ▶ S inverse semigroup: semigroup S (set with assoc. binary op);
- ► every s ∈ S has unique generalised inverse s* ∈ S: ss*s = s, s*ss* = s*;
- ► a partial homeomorphism on X is a homeomorphism between open subsets of X: h : d(h) → r(h);
- partial homeomorphisms on X is inverse semigroup
 PHomeo(X): composition on suitable domain, h* := h⁻¹;
- action of S on X is semigroup homomorphism $h: S \to \text{PHomeo}(X); h_t: X_{t^*} \to X_t;$

copy groupoid structure from previous example (+ quotient).

Note: Similarly inverse semigroup action on other objects by partial isomorphisms.

 \mathcal{G} a groupoid on X.

A bisection of \mathcal{G} is open set $U \subseteq \mathcal{G}$ such that $r|_U$, $d|_U$ injective.

Example: $\mathcal{G} = X \rtimes_h G$ then we have bisections $U_t = X \times \{t\}$, $t \in G$.

Set of bisections $Bis(\mathcal{G})$ is an **inverse semigroup**:

$$UV := \{\gamma\eta : \gamma \in U, \ \eta \in V\}, \quad U^* := \{\gamma^{-1} : \gamma \in U\}.$$

Get an inverse semigroup action $h : Bis(\mathcal{G}) \to PHomeo(X)$:

$$h_U: d(U) \rightarrow r(U); \ h_U:=r \circ d|_U^{-1}.$$

Example (continued): $\mathcal{G} = X \rtimes_h G$ then $h_{U_t} = h_t$.

Inverse semigroup action $h: S \to \text{PHomeo}(X) \rightsquigarrow \text{groupoid } \mathcal{G}_h$. Groupoid $\mathcal{G} \rightsquigarrow \text{inv.}$ semigroup action $h_{\mathcal{G}} : \text{Bis}(\mathcal{G}) \to \text{PHomeo}(X)$. In particular $\mathcal{G} \cong X \rtimes \text{Bis}(\mathcal{G})$.

Groupoid algebras

- ► Well-developed theory of groupoid *C**-algebras;
- some other Banach algebras e.g. groupoid L^p-operator algebras and crossed product Banach algebras.

Goal: General construction of Banach algebra associated to \mathcal{G} ; has the above as special cases.

Cover: twisted étale groupoid, not necessarily Hausdorff, $\mathbb{R}\text{-}$ or $\mathbb{C}\text{-}algebras,$ normed by family of representations.

Simplifications: no twist, only $\mathbb{C}\text{-algebras},$ Hausdorff groupoids, no choice of bisections.

 \mathcal{G} an étale groupoid with unit space X.

$$C_c(\mathcal{G}) := \operatorname{span} \{ f \in C_c(U) : U \in \operatorname{Bis}(\mathcal{G}) \}$$

is a *-algebra with operations

$$(f*g)(\gamma):=\sum_{\eta_1\eta_2=\gamma}f(\eta_1)g(\eta_2),\qquad f^*(\gamma):=\overline{f(\gamma^{-1})}.$$

Existing norms on $C_c(\mathcal{G})$:

$$\|f\|_{L^{1}} := \max_{x \in X} \sum_{d(\gamma)=x} |f(\gamma)|, \qquad \|f\|_{L^{\infty}} := \max_{x \in X} \sum_{r(\gamma)=x} |f(\gamma)|, \\ \|f\|_{I} := \max \{\|f\|_{L^{1}}, \|f\|_{L^{\infty}}\}.$$

(Traditionally: a representation of $C_c(\mathcal{G})$ is a $\|\cdot\|_{l}$ -contractive homomorphism...)

Recall that $f \in C_c(\mathcal{G})$, so $f = \sum_{U \in Bis(\mathcal{G})} f_U$, where $f_U \in C_c(U)$.

Observation: the above norms all agree with supremum norm $\|\cdot\|_{\infty}$ on each f_U .

Lemma (BKM)

There is a maximal submultiplicative involutive norm $\|\cdot\|_{\max}$ on $C_c(\mathcal{G})$ which agrees with supremum norm $\|\cdot\|_{\infty}$ on each f_U , $U \in \operatorname{Bis}(\mathcal{G})$: for $f \in C_c(\mathcal{G})$

$$||f||_{\max} := \inf \left\{ \sum_{k=1}^{n} ||f_{U_k}||_{\infty} : f = \sum_{k=1}^{n} f_{U_k}, \ f_k \in C_c(U_k), \ U_k \in \operatorname{Bis}(\mathcal{G}) \right\}$$

$$\|f\|_{\infty} \le \|f\|_{L^1}, \|f\|_{L^{\infty}} \le \|f\|_I \le \|f\|_{\max}$$

Definition (BKM)

The groupoid Banach algebra of \mathcal{G} is $F(\mathcal{G}) := \overline{C_c(\mathcal{G})}^{\|\cdot\|_{\max}}$. This is a Banach *-algebra.

Representations

A representation of F(G):

• in a Banach algebra B is a contractive homomorphism $F(\mathcal{G}) \rightarrow B$;

• on a Banach space E is a contractive homomorphism $F(\mathcal{G}) \rightarrow \mathcal{B}(E)$.

Definition

If \mathfrak{r} is a family of representations of $F(\mathcal{G})$ then define

$$F^{\mathfrak{r}}(\mathcal{G}) := \overline{C_{c}(\mathcal{G})}^{\|\cdot\|_{\mathfrak{r}}}, \quad \textit{where} \quad \|f\|_{\mathfrak{r}} := \sup_{\psi \in \mathfrak{r}} \|\psi(f)\|.$$

Examples:

Question: Now we constructed $F^{\mathfrak{r}}(\mathcal{G})$, why is it useful?

I will try to convince you by showing several ways the construction reflects underlying data:

- underlying inverse semigroup action and representation theory;
- groupoid L^p-operator algebras;
- simplicity criteria for $F^{\mathfrak{r}}(\mathcal{G})$ reflected in \mathcal{G} .

Representations and inverse semigroup actions

Recall: $\mathcal{G} \cong X \rtimes_h S$ for inverse semigroup action $S = Bis(\mathcal{G})$:

$$h: S \to \operatorname{PHomeo}(X); \ h_t: X_{t^*} \to X_t,$$

where $X_s \subseteq X$ open.

Hence: inverse semigroup action

$$\hat{h}: S \rightarrow \operatorname{PAut}(C_0(X)); \ \hat{h}_t: C_0(X_{t^*}) \rightarrow C_0(X_t),$$

given by $(\hat{h}_t(\phi))(x) := \phi(h_t^{-1}(x))$ where $C_0(X_s) \trianglelefteq C_0(X)$.

Sieben and Buss-Exel: crossed product C^* -algebras built from this data: completions of

 $L^{1}(\hat{h}) := \{ f \in L^{1}(S, C_{0}(X)) : f(t) \in C_{0}(X_{t^{*}}) \}$ with product

$$(f*g)(r) := \sum_{st=r} \hat{h}_s \Big(\hat{h}_{s^*} \big(f(s) \big) g(t) \Big).$$

Definition $\hat{h}: S \to \text{PAut}(C_0(X))$. A covariant representation of \hat{h} in B is (π, v) where

 $\pi: C_0(X) \to B \text{ a representation} \text{ and } v: S \to (B'')_1 \text{ a map},$ i. $v_t \pi(a) = \pi(\hat{h}_t(a))v_t, \quad (a \in C_0(X_{t^*}));$ ii. $\pi(a)v_s v_t = \pi(a)v_{st}, \quad (a \in C_0(X_{st}));$ iii. $\pi(a)v_e = \pi(a), \quad (e \in E(S), a \in C_0(X_e));$ iv. neuroplication of $(a \in C_0(X_e))$

iv. normalisation: $v_t = \lim_i \pi(e_i)v_t$, $((e_i)_i \text{ approx. unit } C_0(X_t))$.

Technical notes:

- ▶ in general $v_t \in B_1$ is too restrictive, we need the bidual;
- normalisation condition is equivalent to requiring each v_t is a partial isometry, we can always add it;
- need to sort out relationship between v_{t^*} and $(v_t)^*$;
- other normalisation: B is a dual Banach algebra;
- representations on Banach space E vs representations in $\mathcal{B}(E)$.

Covariant representations integrate to representations of $L^1(\hat{h})$ in usual way:

$$(\pi, v) ext{ covariant, } f \in L^1(\hat{h}) \rightsquigarrow \ \pi
times v(f) := \sum_{t \in \mathcal{S}} \piig(f(t)ig) v_t.$$

Definition (BKM) $\hat{h}: S \to \text{PAut}(C_0(X))$ inverse semigroup action. \mathfrak{r} a collection of covariant representations of \hat{h} . Define \mathfrak{r} -crossed product as

$$C_0(X) \rtimes_{\hat{h}}^{\mathfrak{r}} S := \overline{L^1(\hat{h})}^{\|\cdot\|_{\mathfrak{r}}}, \quad where \quad \|f\|_{\mathfrak{r}} := \sup_{(\pi, \nu) \in \mathfrak{r}} \|\pi \rtimes \nu(f)\|.$$

In particular \mathfrak{r} all covariant representations gives universal crossed product $C_0(X) \rtimes_{\hat{h}} S$.

Theorem (BKM)

 $\mathcal{G} \cong X \rtimes_h S$. There is a bijective correspondence between:

• representations $\psi : F(\mathcal{G}) \to B$;

• normalised covariant representations (π, v) of \hat{h} in B. The correspondence is $\psi(a_t \delta_t) \iff \pi(a_t)v_t \ (a_t \in C_c(X_t))$.

Hence $F(\mathcal{G}) \cong C_0(X) \rtimes_{\hat{h}} S$. More generally

$$F^{\mathfrak{r}}(\mathcal{G})\cong C_0(X)\rtimes_{\hat{h}}^{\mathfrak{r}}S$$

where \mathfrak{r} all representations in $\mathcal{B}(E)$.

Groupoid L^p-algebras

Previously studied by Gardella–Lupini, Choi–Gardella–Thiel, Hetland–Ortega, Phillips.

Definition (BKM) $p \in [1, +\infty]$. Define the full groupoid L^p-operator algebra by $F^{p}(\mathcal{G}) := F^{\mathfrak{r}}(\mathcal{G}),$

where \mathfrak{r} is class of representations in $\mathcal{B}(L^p(\mu))$, μ localisable.

Note: above is specific to $\mathbb C\text{-algebras};$ for $\mathbb R\text{-algebras}$ need to modify.

This definition matches existing one of Gardella-Lupini.

We have seen that underlying representations of $F(\mathcal{G})$ are covariant representations of the inverse semigroup action $C_0(X) \rtimes_{\hat{h}} S$.

In L^p case there are two types of data **underlying this**:

- spatial partial isometries (Phillips);
- L^p-partial isometries.

Underlying (Ω, Σ, μ) is **Boolean algebra** $[\Sigma]$ — identify null sets. A set isomorphism is $\Phi : \Sigma \to \Sigma$ which descends to an isomorphism of Boolean algebras $[\Phi] : [\Sigma] \to [\Sigma]$. Subspace of (Ω, Σ, μ) is $(D, \Sigma \cap D, \mu|_D)$, hence partial set automorphism. If Φ partial set automorphism then we get invertible partial map

$$T_{\Phi}: L^p(\mu) \to L^p(\mu); \ T_{\Phi}(1_C) = 1_{\Phi(C)}.$$

Definition (Phillips)

A spatial partial isometry is

$$U_{\Phi} := \left(\frac{d\mu \circ \Phi^*}{d\mu}\right)^{1/p} T_{\Phi}, \quad U_{\Phi} \in \operatorname{PAut}(L^p(\mu))$$

E Banach space, $p \in [1, \infty]$. An L^p -projection on *E* is $P \in \mathcal{B}(E)$ with:

$$P^{2} = P, \quad \begin{cases} \|\xi\|^{p} = \|P\xi\|^{p} + \|(I-P)\xi\|^{p} & p < \infty; \\ \|\xi\| = \max\left\{\|P\xi\|, \|(I-P)\xi\|\right\} & p = \infty. \end{cases}$$

Definition

E Banach space, $p \in [1, \infty]$. An L^p -partial isometry on *E* is contraction $T \in \mathcal{B}(E)$ such that:

• there is contraction $T^* \in \mathcal{B}(E)$ with $TT^*T = T$ and $T^*TT^* = T^*$;

Theorem (BKM)

 $p \in [1, \infty] \setminus \{2\}$. Spatial partial isometries on $L^{p}(\mu)$ coincide with L^{p} -partial isometries on $L^{p}(\mu)$.

Now we understand the **underlying data** in L^{p} case.

Theorem (BKM) $n \in (1, \infty)$ $G = X \times S$ Every represent

 $p \in (1, \infty)$, $\mathcal{G} = X \rtimes_h S$. Every representation of $F^p(\mathcal{G})$ on $L^p(\mu)$ is a covariant representation (π, v) where:

- π represents $C_0(X)$ as multiplication operators and v represents S as spatial partial isometries, equivalently as L^p -partial isometries, on $L^p(\mu)$;
- equivalently, π : C₀(X) → L[∞](μ) and there is an inverse semigroup {Φ_t}_{t∈S} of partial set automorphisms such that v_t = U_{Φ_t}.

Notes:

- Important tool is Banach–Lamperti Theorem: for p ∈ [1,∞] \ {2} every (partial) isometry on L^p(µ) is spatial.
- Phillips assumed representations are spatial, we now know this is automatic.

Simplicity

Question: When is $F^{r}(\mathcal{G})$ a simple Banach algebra?

Aim to imitate C^* -algebraic results. For example:

Theorem (Brown–Clark–Farthing–Sims) For Hausdorff second-countable *G* TFAE:

- (i) \mathcal{G} is topologically principal and minimal;
- (ii) $C_r^*(\mathcal{G})$ is simple.

Note: we will replace topologically principal by topologically free which is weaker (Kwaśniewski–Meyer).

 ${\mathcal G}$ is called:

- ▶ topologically free if there is no non-empty open $V \subseteq G \setminus X$ with $r|_V = d|_V$.
- minimal if there is no non-trivial open U ⊆ X with d(γ) ∈ U implies r(γ) ∈ U, γ ∈ G.

We need the reduced C^* -algebra $C^*_r(\mathcal{G})$ here: the kernel of $\Lambda : C^*(\mathcal{G}) \to C^*_r(\mathcal{G})$ is an ideal.

 $C_0(\mathcal{G}) := \overline{C_c(\mathcal{G})}^{\|\cdot\|_{\infty}}$ space of bounded Borel functions.

Lemma (BKM)

For reasonable $F^{\mathfrak{r}}(\mathcal{G})$ the inclusion $C_{\mathfrak{c}}(\mathcal{G}) \hookrightarrow C_{\mathfrak{0}}(\mathcal{G})$ extends to the Renault map $j_{\mathfrak{r}} : F^{\mathfrak{r}}(\mathcal{G}) \to C_{\mathfrak{0}}(\mathcal{G})$:

• ker
$$j_{\mathfrak{r}}$$
 is a closed ideal of $F^{\mathfrak{r}}(\mathcal{G})$.

Definition

Reasonable $F^{\mathfrak{r}}(\mathcal{G})$ is reduced if $j_{\mathfrak{r}}$ is **injective**. $F^{\mathfrak{r}}_{r}(\mathcal{G}) := F^{\mathfrak{r}}(\mathcal{G}) / \ker j_{\mathfrak{r}}$ is a reduced groupoid Banach algebra.

This covers existing cases:

- reduced C^* -algebra $C^*_r(\mathcal{G})$ (Renault);
- ▶ reduced L^{P} -algebras $F_{r}^{p}(\mathcal{G})$ (Austad–Ortega, Phillips).

Theorem (BKM)

For Hausdorff *G* TFAE:

- (i) \mathcal{G} is topologically free and minimal;
- (ii) every reduced reasonable $F_r^{\mathfrak{r}}(\mathcal{G})$ is simple;
- (iii) $F_r^1(\mathcal{G})$ or $F_r^\infty(\mathcal{G})$ is simple;
- (iv) a reduced reasonable $F_r^{\mathfrak{v}_0}(\mathcal{G})$ is simple and contains $C_0(X)$ as a maximal abelian subalgebra.

Special cases of this result:

- C*-algebra result above;
- simplicity criteria for L^p-Cuntz algebras (Phillips);
- simplicity of Cuntz–Krieger and graph algebras (Cortiñas–Rodriguez);
- crossed products by (inverse semi)group actions.

If \mathcal{G} is **non-Hausdorff** we need to modify above construction. $\mathfrak{M}_0(\mathcal{G})$: functions in $C_0(\mathcal{G})$ with meagre support.

Lemma (BKM)

For reasonable $F^{\mathfrak{r}}(\mathcal{G})$ the map $C_{\mathfrak{c}}(\mathcal{G}) \hookrightarrow C_{0}(\mathcal{G})/\mathfrak{M}_{0}(\mathcal{G})$ extends to the essential Renault map $j_{\mathfrak{r}}^{e} : F^{\mathfrak{r}}(\mathcal{G}) \to C_{0}(\mathcal{G})/\mathfrak{M}_{0}(\mathcal{G})$:

•
$$j_{\mathfrak{r}}^{e}$$
 is a $(C_{c}(\mathcal{G}), *)$ -bimodule map;

• ker
$$j_{\mathfrak{r}}^{e}$$
 is a closed ideal of $F^{\mathfrak{r}}(\mathcal{G})$.

Definition

Reasonable $F^{\mathfrak{r}}(\mathcal{G})$ is essential if $j^{\mathfrak{e}}_{\mathfrak{r}}$ is injective. $F^{\mathfrak{r}}_{\mathfrak{e}}(\mathcal{G}) := F^{\mathfrak{r}}(\mathcal{G}) / \ker j^{\mathfrak{e}}_{\mathfrak{r}}$ is an essential groupoid Banach algebra.

The simplicity theorem (almost — delete (iv)) works if we replace reduced by essential.

Thank you for listening!