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Weak amenability for dynamical systems

by

Andrew McKee (Göteborg)

Abstract. Using the recently developed notion of a Herz–Schur multiplier of a C∗-
dynamical system we introduce weak amenability of C∗- and W ∗-dynamical systems. As
a special case we recover Haagerup’s characterisation of weak amenability of a discrete
group. We also consider a generalisation of the Fourier algebra and its multipliers to
crossed products.

1. Introduction. Among the many characterisations of amenability of
a locally compact group G is Leptin’s Theorem [12]: G is amenable if and
only if the Fourier algebra of G has a bounded approximate identity. The
idea to weaken the latter condition, by requiring the approximate iden-
tity to be bounded in a different norm, goes back to Haagerup [9]. Follow-
ing this, Cowling–Haagerup [5] formally defined weak amenability, explored
some equivalent conditions, and introduced the Cowling–Haagerup (or weak
amenability) constant. This constant has been computed for a large number
of groups: see Brown–Ozawa [4, Theorem 12.3.8] and the references given
by Knudby [11]. An overview of the literature surrounding weak amenability
can be found in [11, Section 5].

Weak amenability is an example of a property defined in terms of func-
tions on a group which can be characterised by an approximation property
of the group von Neumann algebra and/or group C∗-algebra (see [4, Chap-
ter 12] for several examples of such properties); the aim of this paper is
to extend this idea to crossed products. A C∗-algebra A is said to have
the completely bounded approximation property (CBAP) if there exists a net
(Tγ) of finite rank completely bounded maps on A such that Tγ → idA in
the point-norm topology and supγ ‖Tγ‖cb = C <∞. The infimum of all such
constants C is denoted Λcb(A). Similarly, a von Neumann algebra M is said
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to have the weak∗ completely bounded approximation property (weak∗ CBAP)
if there exists a net (Rγ) of ultraweakly continuous, finite rank, completely
bounded maps on M such that Rγ → idM in the point-weak∗ topology
and supγ ‖Rγ‖cb = C < ∞; again, the infimum of all such constants C is
denoted Λcb(M). A locally compact group G is called weakly amenable if
there exists a net of compactly supported Herz–Schur multipliers on G, uni-
formly bounded in the Herz–Schur multiplier norm, converging uniformly
to 1 on compact sets. Haagerup [9, Theorem 2.6] proved that a discrete
group is weakly amenable if and only if the reduced group C∗-algebra has
the completely bounded approximation property, if and only if the group
von Neumann algebra has the weak∗ completely bounded approximation
property.

In this paper we define weak amenability of C∗- and W ∗-dynamical sys-
tems and characterise a weakly amenable system in terms of the completely
bounded approximation property of the corresponding crossed product. The
results in this direction, Theorems 4.3 and 4.6, may be seen as a generalisa-
tion of Haagerup’s result above. Haagerup–Kraus [10, Section 3] have studied
W ∗-dynamical systems under the assumption that G is weakly amenable;
Proposition 4.8 was motivated by their Theorem 3.2(b) and Remark 3.10.

In Section 2 we review the definitions and results surrounding the notion
of a Herz–Schur multiplier of a C∗-dynamical system. Section 3 is motivated
by the description of Herz–Schur multipliers as completely bounded multi-
pliers of the Fourier algebra; we view the predual of (the enveloping von Neu-
mann algebra of) the reduced crossed product as consisting of vector-valued
functions on the group, and describe the completely bounded multipliers
of this space as certain Herz–Schur multipliers of the associated dynamical
system. In Section 4 we define weak amenability of C∗- and W ∗-dynamical
systems, and provide a characterisation.

2. Preliminaries. In this section we review the definitions and results of
[13] required later, as well as establish notation. Throughout, G will denote a
second-countable, locally compact, topological group, endowed with left Haar
measure m; integration on G, with respect to m, over the variable s is simply
denoted ds. Write λG for the left regular representation of G on L2(G), and
for the corresponding representation of L1(G). The reduced group C∗-algebra
C∗r (G) and group von Neumann algebra vN(G) of G are, respectively, the
closure of λG(L1(G)) in the norm and weak∗ topology of B(L2(G)); we also
have vN(G) = {λGs : s ∈ G}′′.

Throughout, A will be a unital, separable C∗-algebra. Let α : G →
Aut(A) be a group homomorphism which is continuous in the point-norm
topology, i.e. for all a ∈ A the map s 7→ αs(a) is continuous from G to A; in
short, consider a C∗-dynamical system (A,G, α).
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Let θ be a faithful representation of A on Hθ and define representations
of A and G on L2(G,Hθ) by

(πθ(a)ξ)(s) := θ(αs−1)(a)(ξ(s)), (λθt ξ)(s) := ξ(t−1s),

for all a ∈ A, s, t ∈ G, ξ ∈ L2(G,Hθ). It is easy to check that

πθ(αt(a)) = λθtπ
θ(a)(λθt )

∗, a ∈ A, t ∈ G.
The pair (πθ, λθ) is therefore a covariant representation of (A,G, α). Thus
we obtain a representation πθ o λθ of the Banach ∗-algebra L1(G,A) on
L2(G,Hθ) given by

πθ o λθ(f) :=
�

G

πθ(f(s))λθs ds, f ∈ L1(G,A).

The reduced crossed product of A by G is defined as the closure of
(πθ o λθ)(L1(G,A)) in the operator norm of B(L2(G,Hθ)); it does not de-
pend on the choice of faithful representation θ so we will often omit the
superscript θ from our notation, and denote the reduced crossed product by
Aoα,r G, writing Aoα,θ G when we wish to emphasise the choice of θ. The
full crossed product of A by G, denoted Aoα G, is the C∗-algebra obtained
by completing L1(G,A) in the universal norm

‖f‖ := sup{‖ρo τ(f)‖ : (ρ, τ) is a covariant representation of (A,G, α)}.
We refer to Pedersen [14, Chapter 7] and Williams [18] for the details of
these constructions.

In [13] the present author, with Todorov and Turowska, introduced and
studied Herz–Schur multipliers of a C∗-dynamical system, extending the
classical notion of a Herz–Schur multiplier (see De Cannière–Haagerup [6]).
We now recall the definitions and results needed here; the classical definitions
of Herz–Schur multipliers are the special case A = C of the definitions below.
A bounded function F : G → B(A) will be called pointwise measurable if,
for every a ∈ A, the map s 7→ F (s)(a) is a weakly measurable function from
G to A. For each f ∈ L1(G,A) define F · f(s) := F (s)(f(s)) (s ∈ G). If F
is bounded and pointwise measurable then F · f is weakly measurable and
‖F · f‖1 ≤ sups∈G ‖F (s)‖ ‖f‖1, so F · f ∈ L1(G,A) for every f ∈ L1(G,A).
We write CB(A) for the collection of completely bounded maps on A.

Definition 2.1. Let θ : A → B(Hθ) be a faithful representation of A
on a separable Hilbert space. A bounded, pointwise measurable function
F : G→ CB(A) will be called a Herz–Schur (A,G, α)-multiplier if the map
SθF : (πθ o λθ)(L1(G,A))→ (πθ o λθ)(L1(G,A)) given by

SθF ((π
θ o λθ)(f)) := (πθ o λθ)(F · f)

is completely bounded; if this is the case then SθF has a unique extension to
a completely bounded map on Aoα,rG. The set of all Herz–Schur (A,G, α)-
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multipliers is an algebra with respect to the obvious operations; we denote
it by S(A,G, α) and endow it with the norm ‖F‖HS := ‖SF ‖cb.

The above definition does not depend on the faithful representation θ [13,
Remark 3.2(ii)]. Let αθ : G → Aut(θ(A)) be given by αθt (θ(a)) := θ(αt(a))
(t ∈ G, a ∈ A); note that if α is continuous in the point-norm topology
then so is αθ. We say α is a θ-action if, for every t ∈ G, αθt extends to a
weak∗-continuous automorphism of θ(A)′′ such that the map t 7→ αθt (x) is
weak∗-continuous for each x ∈ θ(A)′′. We will need to work with Aoα,θ G

w∗ ,
which we denote by Aow∗

α,θ G.
Let M be a von Neumann algebra on a Hilbert space H, and β : G →

Aut(M) a group homomorphism which is continuous in the point-weak∗
topology; then the triple (M,G, β) is called aW ∗-dynamical system. Defining
representations π and λ of M and G respectively on L2(G,H) by the same
formulae as above gives a covariant pair of representations (π, λ) of (M,G, β),
with π normal. The (von Neumann) crossed product of (M,G, β), denoted
M ovN

β G, is the von Neumann algebra generated by π(M) and λ(G) on
L2(G,H). See Takesaki [17, Chapter X] for more on this construction.

Classically, u : G → C is called a Herz–Schur multiplier if u is a com-
pletely bounded multiplier of the Fourier algebra of G (the Fourier algebra
of G, A(G), will be defined in Section 3), i.e. uv ∈ A(G) for all v ∈ A(G)
and the map

mu : A(G)→ A(G), mu(v) := uv, v ∈ A(G),

is completely bounded; the space of such functions is denoted McbA(G).
Bożejko–Fendler [3] discuss several equivalent definitions of Herz–Schur mul-
tipliers, including: Herz–Schur multipliers on G coincide with the completely
bounded multipliers of vN(G). One can further show that if u is a Herz–Schur
multiplier of G then m∗u : vN(G)→ vN(G) leaves C∗r (G) invariant. In defin-
ing Herz–Schur (A,G, α)-multipliers we took the reverse approach, defining
first a map on Aoα,rG. If the dynamical system in question is (C, G, 1) then
the corresponding crossed product is precisely C∗r (G), so (identifying CB(C)
with C) we see that u is a Herz–Schur (C, G, 1)-multiplier if and only if it is
a Herz–Schur multiplier. The goal of Section 3 is to introduce a space for a
C∗-dynamical system (A,G, α) which generalises the Fourier algebra of a lo-
cally compact group, and identify Herz–Schur (A,G, α)-multipliers with the
completely bounded ‘multipliers’ of this space. In contrast to the classical
case it is not clear if the map SF corresponding to F ∈ S(A,G, α) extends
to the weak∗-closure of Aoα,r G, so we make the following definition.

Definition 2.2. Let (θ,Hθ) be a faithful representation of A on a sep-
arable Hilbert space. A bounded function F : G → CB(A) will be called a
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Herz–Schur θ-multiplier of (A,G, α) if the map

SθF : πθ(a)λθt 7→ πθ(F (t)(a))λθt , a ∈ A, t ∈ G,
has an extension to a completely bounded weak∗-continuous map on Aow∗

α,θG.

Observe that [13, Remark 3.4] shows that Herz–Schur θ-multipliers of
(A,G, α) act in the same way as Herz–Schur (A,G, α)-multipliers, when
viewed through a weak∗-continuous functional. To simplify notation we will
often omit the superscript θ from the maps SF associated to the multipliers
defined above; it will be clear from the presence/absence of θ elsewhere in
the notation where SF is acting.

The following result [13, Theorem 3.8] provides a useful characterisation
of Herz–Schur (A,G, α)-multipliers, generalising the classical transference
theorem (see e.g. [3]).

Theorem 2.3. Let (A,G, α) be a C∗-dynamical system with A ⊆ B(H),
and let F : G → CB(A) be a bounded, pointwise measurable function. The
following are equivalent:

(i) F is a Herz–Schur (A,G, α)-multiplier;
(ii) there exist a separable Hilbert space Hρ, a non-degenerate representation

ρ : A→ B(Hρ) and V,W ∈ L∞(G,B(H,Hρ)) such that

N (F )(s, t)(a) := αt−1

(
F (ts−1)(αt(a))

)
=W (t)∗ρ(a)V (s).

Remark 2.4. Bédos and Conti [1, Section 4] have taken a Hilbert C∗-
module approach to completely bounded multipliers of a discrete (twisted)
C∗-dynamical system. It is easy to check that F : G → CB(A) is a Herz–
Schur (A,G, α)-multiplier if and only if TF : G×A→ A, TF (t, a) := F (t)(a)
(t ∈ G, a ∈ A), is a completely bounded reduced multiplier of (A,G, α), in
the sense of Bédos–Conti. The same authors have also introduced a version
of the Fourier–Stieltjes algebra for discrete (twisted) C∗-dynamical systems,
again using Hilbert C∗-modules [2].

3. Fourier space of a dynamical system. In this section we develop
a space for the crossed product which is analogous to the Fourier algebra in
the setting of group C∗-algebras and von Neumann algebras, and study the
multipliers of this space. To motivate this discussion and fix notation let us
first recall some facts about the Fourier algebra of a locally compact group G.
The Fourier algebra of G, introduced by Eymard [7], denoted A(G), is the
space of coefficients of the left regular representation, that is, the space of
functions u : G→ C of the form

u(t) = 〈λGt ξ, η〉, t ∈ G, ξ, η ∈ L2(G).

The linear space defined in this way becomes an algebra under pointwise
multiplication, and turns out to be the predual of the group von Neumann
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algebra vN(G). Bożejko–Fendler [3] proved that the space McbA(G) is iso-
metrically isomorphic to the space of Herz–Schur multipliers of G, so they
are treated as the same space.

Recall that A denotes a unital C∗-algebra and α : G → Aut(A) is a
point-norm continuous homomorphism. The following definition is adapted
from Pedersen [14, 7.7.4].

Definition 3.1. Let (A,G, α) be a C∗-dynamical system and let (θ,Hθ)
be a faithful representation of A. Let ũ ∈ (Aoα,θ G)

∗ be a functional of the
form

(1) ũ(T ) =
∑
n∈N
〈Tξn, ηn〉, T ∈ Aoα,θ G,

where ξn, ηn ∈ L2(G,Hθ) satisfy
∑

n ‖ξn‖2 < ∞ and
∑

n ‖ηn‖2 < ∞. The
set of such functionals forms a linear space which can be identified with
((Aoα,θG)

′′)∗. To each such ũ we associate the function u : G→ A∗ defined
by

(2) u(t)(a) := ũ(πθ(a)λθt ), a ∈ A, t ∈ G.
The set of all functions from G to A∗ associated to functionals of the form
of ũ is a linear space (with the obvious operations), which we again identify
with the predual of (Aoα,θ G)

′′ and endow with the norm

‖u‖A := ‖ũ‖,
where the right side means the norm of ũ as a member of the dual space of
(Aoα,θ G)

′′. The resulting space is called the Fourier space of (A,G, α) and
denoted Aθ(A,G, α).

In the case of the system (C, G, 1), if we let θ be the one-dimensional
representation of C then πθ = θ ⊗ id, and we can identify λθ with λG; thus
the above definition gives the predual of (Co1,r G)

′′ ∼= vN(G), so the space
defined may be identified with A(G). Definition 3.1 also works unchanged for
a W ∗-dynamical system (M,G, β); in this case the definition identifies the
predual of the von Neumann algebra M ovN

β G with the space of functions
u : G→M∗ corresponding to functionals of the form (1) [16]. The following
is shown by Fujita [8, Lemma 3.4].

Remark 3.2. Let (A,G, α) be a C∗-dynamical system and (θ,Hθ) a faith-
ful representation of A. The compactly supported functions form a dense
subset of Aθ(A,G, α). The same holds for a W ∗-dynamical system.

It appears that the space Aθ(A,G, α) was first defined forW ∗-dynamical
systems and their crossed products by Takai [16]. Note that in the case of
a W ∗-dynamical system Fujita [8] introduces a Banach algebra structure on
Aθ(A,G, α), but we do not pursue this here.
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We now define multipliers of the Fourier space of a C∗-dynamical system,
and study the relationship with Herz–Schur multipliers of the system. The
results in this section are essentially predual versions of some results in [13,
Section 3].

Definition 3.3. A bounded function F : G→ B(A) is called a multiplier
of Aθ(A,G, α) if there is a bounded map

sF : Aθ(A,G, α) → Aθ(A,G, α)
such that

(sFu)(t)(a) = u(t)(F (t)(a)), u ∈ Aθ(A,G, α), t ∈ G, a ∈ A.
The norm of a multiplier F is defined by ‖F‖M := ‖s∗F ‖. If moreover F maps
into CB(A) and the dual map s∗F is completely bounded then F is called a
completely bounded multiplier of Aθ(A,G, α). In this case the completely
bounded multiplier norm of F is defined by ‖F‖Mcb := ‖s∗F ‖cb. The spaces
of bounded and completely bounded multipliers of Aθ(A,G, α) are denoted
MAθ(A,G, α) and McbAθ(A,G, α) respectively.

Lemma 3.4. Let F : G → B(A) be a bounded, pointwise measurable
function, and (θ,Hθ) be a faithful representation of A. The following are
equivalent:

(i) F is a multiplier of Aθ(A,G, α);
(ii) there is an ultraweakly continuous bounded operator SF on (Aoα,θ G)

′′

such that SF (πθ(a)λθt ) = πθ(F (t)(a))λθt for all a ∈ A, t ∈ G.
Moreover, if either condition holds then ‖F‖M = ‖SF ‖. Finally, F is a
completely bounded multiplier of Aθ(A,G, α) if and only if the map SF of (ii)
is completely bounded, and in this case ‖F‖Mcb = ‖SF ‖cb.

Proof. If F is a multiplier of Aθ(A,G, α) then SF := s∗F is the required
map because for any u ∈ Aθ(A,G, α),
〈SF (πθ(a)λθt ), u〉 = 〈πθ(a)λθt , sFu〉 = u(t)(F (t)(a)) = 〈πθ(F (t)(a))λθt , u〉.
Conversely, given u ∈ Aθ(A,G, α), the function

πθ(a)λθt 7→ 〈SF (πθ(a)λθt ), u〉
extends to an ultraweakly continuous linear functional on (A oα,θ G)

′′.
Therefore, there is Fu ∈ Aθ(A,G, α), with ‖Fu‖ ≤ ‖u‖A‖SF ‖, such that
〈πθ(a)λθt , Fu〉 = 〈SF (πθ(a)λθt ), u〉. It follows that the map u 7→ Fu is con-
tinuous, and

(Fu)(t)(a) = 〈πθ(a)λθt , Fu〉 = 〈SF (πθ(a)λθt ), u〉 = u(t)(F (t)(a))

for all t ∈ G, a ∈ A, so F is a multiplier of Aθ(A,G, α) with sFu = Fu for
all u ∈ Aθ(A,G, α). Finally, ‖F‖M = ‖s∗F ‖ = ‖SF ‖ by definition.

The statements about completely bounded multipliers follow similarly.
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Since the ultraweak topology on (A oα,θ G)
′′ is the relative ultraweak

topology from B(L2(G) ⊗ Hθ), we consider the map SF of the previous
lemma to be a weak∗-continuous map on Aow∗

α,θ G.

Corollary 3.5. The space of Herz–Schur θ-multipliers of (A,G, α) co-
incides isometrically with the space of completely bounded multipliers of
Aθ(A,G, α).

Proof. Immediate from Lemma 3.4 and [13, Corollary 3.10].

In the next section we will use the description of Herz–Schur multipliers
of a dynamical system as completely bounded multipliers of the Fourier space
in studying weak amenability of the system.

4. Weak amenability. In this section we define weak amenability of a
C∗-dynamical system; when the group is discrete, we show this is equivalent
to the CBAP of the reduced crossed product. We also define weak amenabil-
ity of a W ∗-dynamical system, and when the group is discrete and weakly
amenable, we show this is equivalent to the weak∗ CBAP of the associated
crossed product. The weak∗ CBAP for crossed products of W ∗-dynamical
systems has been studied by Haagerup–Kraus [10, Section 3]; they showed
that if (M,G,α) is a W ∗-dynamical system with G weakly amenable andM
having the weak∗ CBAP then it is not true in general that M ovN

α G has the
weak∗ CBAP. The CBAP for the reduced crossed product of a C∗-dynamical
system has been studied by Sinclair–Smith [15] under the assumption that
the group is amenable; here we give some other conditions under which the
reduced crossed product has the CBAP.

As before, A is a unital C∗-algebra and (θ,Hθ) is a faithful representation
of A. In this section, G will always denote a discrete group. Denote by
α : G → Aut(A) a homomorphism, so that (A,G, α) is a C∗-dynamical
system. Since G is discrete, there is a canonical conditional expectation Eθ :
θ(A)oαθ,rG→ θ(A) which is equivariant (see Brown–Ozawa [4, Proposition
4.1.9]). We denote by E the completely positive map defined by

Aoα,θ G ∼= θ(A)oαθ,r G→ A,
∑
t∈G

πθ(at)λ
θ
t 7→ ae, at ∈ A.

The triple (M,G, β) will denote a discrete W ∗-dynamical system, i.e.M is a
von Neumann algebra acting on a Hilbert space HM , G is a discrete group,
and β : G → Aut(M) is a homomorphism. The symbol E will also be used
for the conditional expectation M ovN

β G→M , defined similarly.
Our main questions are:

• For a C∗-dynamical system (A,G, α), what are necessary and/or sufficient
conditions for A oα,θ G to have the completely bounded approximation
property?



Weak amenability for dynamical systems 9

• For a W ∗-dynamical system (M,G, β), what are necessary and/or suf-
ficient conditions for M ovN

β G to have the weak∗ completely bounded
approximation property?

Our approach to these problems is to consider certain Herz–Schur multipliers
of the system in question. Since we have so far only considered Herz–Schur
multipliers of a C∗-dynamical system, we briefly describe a construction,
mentioned by Fujita [8, p. 56], which shows that Herz–Schur multipliers of
a W ∗-dynamical system are particular cases of the weak∗-extendable multi-
pliers of Definition 2.2. For the W ∗-dynamical system (M,G, β), where M
is a von Neumann algebra on the separable Hilbert space HM , consider the
set

Mβ := {x ∈M : t 7→ βt(x) is norm continuous}.
Then Mβ is a G-invariant, weak∗-dense C∗-subalgebra of M containing
the identity, and (Mβ, G, β) is a C∗-dynamical system, with Mβ faithfully
represented on B(HM ). The construction of the reduced crossed product
Mβ oβ,r G, using the faithful representation id : Mβ → B(HM ), gives a
weak∗-dense C∗-subalgebra of M ovN

β G. It follows that Aid(Mβ, G, β) can
be identified with the predual ofMovN

β G, and that the Herz–Schur id-multi-
pliers of (Mβ, G, β) are completely bounded multipliers ofAid(Mβ, G, β), and
the associated maps possess completely bounded, weak∗-continuous exten-
sions to M ovN

β G.
For a C∗-algebra B ⊆ B(H) let CBσ(B) be the space of completely

bounded maps on B that extend to completely bounded, weak∗-continuous
maps on B′′.

Definition 4.1. A C∗-dynamical system (A,G, α) will be called weakly
amenable if there exists a net (Fi) of finitely supported Herz–Schur (A,G, α)-
multipliers such that Fi(t) is a finite rank completely bounded map on A for
all t ∈ G,

Fi(t)(a)
‖·‖−→ a for all t ∈ G, a ∈ A,

and supi ‖Fi‖HS = K < ∞. The infimum of all such K will be denoted by
Λcb(A,G, α).

A W ∗-dynamical system (M,G, β), with M ⊆ B(HM ), will be called
weakly amenable if there is a net Fi : G → CBσ(Mβ) of finitely supported
Herz–Schur id-multipliers of (Mβ, G, β) such that Fi(t) extends to a finite
rank map on M for all t ∈ G,

(3) Fi(t)(a)
w∗→ a for all t ∈ G, a ∈M ,

and supi ‖Fi‖HS = K <∞.

Observe that if A = C then the finite rank condition is always satisfied,
so Definition 4.1 reduces to weak amenability of G.
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Remark 4.2. If (A,G, α) is a weakly amenable C∗-dynamical system
with A unital such that the maps Fi of Definition 4.1 satisfy

(4) Fi(t) ◦ αr = αr ◦ Fi(t), r, t ∈ G,
then G is weakly amenable.

Proof. Suppose that A is faithfully represented on a separable Hilbert
space H and that (A,G, α) is weakly amenable. Take a net (Fi) of Herz–
Schur (A,G, α)-multipliers satisfying the definition. Let ξ ∈ H be a unit
vector. Condition (4) ensures that the map

vi : G→ C, vi(ts
−1) := 〈N (Fi)(s, t)(1A)ξ, ξ〉, s, t ∈ G,

is well-defined. Let Vi and Wi be the maps associated to N (Fi) in Theo-
rem 2.3. Then

vi(ts
−1) = 〈N (Fi)(s, t)(1A)ξ, ξ〉 = 〈Vi(s)ξ,Wi(t)ξ〉, s, t ∈ G.

Hence vi : G→ C is a Herz–Schur multiplier (see Bożejko–Fendler [3]; these
statements are part of the proof of [13, Proposition 4.1] for the particular
case where (4) holds). Since Fi has finite support, so does vi. We have

‖vi‖Mcb ≤ ess sup
s∈G

‖Vi(s)‖ ess sup
t∈G

‖Wi(t)‖ = ‖N (Fi)‖S = ‖Fi‖HS.

Since
vi(ts

−1) = 〈N (Fi)(s, t)(1A)ξ, ξ〉 = 〈Fi(ts−1)(1A)ξ, ξ〉
i→ 〈1Aξ, ξ〉 = 1,

G is weakly amenable.

We now prove our characterisation of weak amenability for C∗-dynamical
systems. Since the reduced crossed product C∗-algebra and the collection of
Herz–Schur (A,G, α)-multipliers do not depend on the representation θ of A,
we will omit θ from our notation, working with a fixed representation of A
on a separable Hilbert space H.

Recall that a C∗-algebra B is said to have the CBAP if there exists a
net (Tγ) of finite rank completely bounded maps on B such that Tγ

γ→ idB
in the point-norm topology and supγ ‖Tγ‖cb = C <∞; the infimum of such
constants C is denoted Λcb(B).

Theorem 4.3. Let (A,G, α) be a C∗-dynamical system with G a discrete
group and A a unital C∗-algebra. The following are equivalent:

(i) (A,G, α) is weakly amenable;
(ii) Aoα,r G has the completely bounded approximation property.

Moreover, if the conditions hold then Λcb(A,G, α) = Λcb(Aoα,r G).

Proof. (i)⇒(ii). Suppose that (Fi) is a net of Herz–Schur (A,G, α)-mul-
tipliers satisfying weak amenability of the system. It follows immediately
that the net (SFi) of corresponding maps on Aoα,rG consists of completely
bounded, finite rank maps satisfying sup ‖SFi‖cb ≤ C < ∞. It remains to
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show that ‖SFi(T )−T‖
i→ 0 for all T ∈ Aoα,rG. For this, it suffices to show

that ‖SFi(
∑

t π(at)λt)−
∑

t π(at)λt‖
i→ 0 when the sums are finite. Indeed,

for any T ∈ Aoα,rG and ε > 0, we can find at ∈ A with ‖T−
∑

t π(at)λt‖ < ε,
where only a finite number of at are non-zero, so

‖SFi(T )− T‖ ≤
∥∥∥SFi(T )− SFi(∑

t

π(at)λt

)∥∥∥
+
∥∥∥SFi(∑

t

π(at)λt

)
−
∑
t

π(at)λt

∥∥∥+ ∥∥∥∑
t

π(at)λt − T
∥∥∥

< Cε+
∥∥∥SFi(∑

t

π(at)λt

)
−
∑
t

π(at)λt

∥∥∥+ ε.

Now∥∥∥SFi(∑
t

π(at)λt

)
−
∑
t

π(at)λt

∥∥∥ =
∥∥∥∑

t

π(Fi(t)(at))λt −
∑
t

π(at)λt

∥∥∥
≤
∑
t

‖π(Fi(t)(at)− at)λt‖
i→ 0

as Fi(t)(a)
i→ a for all a ∈ A, t ∈ G. It follows that Λcb(A oα,r G) ≤

Λcb(A,G, α).
(ii)⇒(i). We will use a similar idea to Haagerup [9, Lemma 2.5]. First

consider a finite rank, completely bounded map ρ : Aoα,rG→ Aoα,rG. Take
T1, . . . , Tk ∈ Aoα,rG which span ran ρ, so there are φ1, . . . , φk ∈ (Aoα,rG)

∗

such that

ρ =
k∑
j=1

φj ⊗ Tj ,

where (φj ⊗ Tj)(T ) = φj(T )Tj (T ∈ A oα,r G). We note that, for a matrix
(xp,q) ∈Mn(Aoα,r G),∥∥∥( k∑

j=1

φj ⊗ Tj
)(n)

(xp,q)
∥∥∥ ≤ k∑

j=1

‖(φj ⊗ Tj)(n)(xp,q)‖

=
k∑
j=1

‖φ(n)j (xp,q) diagn(Tj)‖

≤
k∑
j=1

‖φj‖ ‖(xp,q)‖ ‖Tj‖,

where diagn(T ) denotes the diagonal n× n matrix with each diagonal entry
equal to T . Thus

(5)
∥∥∥ k∑
j=1

φj ⊗ Tj
∥∥∥
cb
≤

k∑
j=1

‖φj‖ ‖Tj‖.
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For each j and each n ∈ N find aij,n ∈ A and sij,n ∈ G such that Tj,n :=∑kj,n
i=1 π(a

i
j,n)λsij,n

satisfies ‖Tj − Tj,n‖ < 1/(nkmaxj ‖φj‖). Define ρn :=∑k
j=1 φj ⊗ Tj,n. Then

‖ρ− ρn‖cb =
∥∥∥( k∑

j=1

φj ⊗ Tj
)
−
( k∑
j=1

φj ⊗ Tj,n
)∥∥∥

cb
(6)

≤
k∑
j=1

‖φj ⊗ (Tj − Tj,n)‖cb ≤
k∑
j=1

‖φj‖ ‖Tj − Tj,n‖ <
1

n
.

Now let (ργ) be a net of maps on Aoα,rG satisfying the conditions of the
CBAP. By the above procedure we obtain a net of maps (ρ′γ,n) on Aoα,r G
which are finite rank, with range in span{π(a)λt : a ∈ A, t ∈ G}. It is
easily checked that ρ′γ,n

γ,n−→ id in point-norm, using the product directed
set. As in (5) we observe that each ρ′γ,n is completely bounded; by (6) we
have ‖ργ−ρ′γ,n‖cb < 1/n for all γ and all n ∈ N, so ‖ρ′γ,n‖cb < ‖ργ‖cb+1/n.
Let C = supγ ‖ργ‖cb and define

ργ,n :=
C

C + 1/n
ρ′γ,n,

so that (ργ,n) is a net satisfying the CBAP for Aoα,rG, uniformly bounded
by C, and with range in span{π(a)λt : a∈A, t∈G}. Define Fγ,n : G→CB(A)
by

(7) Fγ,n(t)(a) := E
(
ργ,n(π(a)λt)λ

∗
t

)
, a ∈ A, t ∈ G.

It is easy to see that suppFγ,n ⊆ {sij,n : 1 ≤ i ≤ kj,n, 1 ≤ j ≤ k}. As ργ,n
is finite rank, with range spanned by finite sums of elements of the form
π(a)λr (a ∈ A, r ∈ G), it follows that each Fγ,n(t) is a finite rank map on A,
with ranFγ,n(t) ⊆ span{a ∈ A : π(a)λt ∈ ran ργ,n}. Since ργ,n

γ,n−→ id in
point-norm, for all t ∈ G, a ∈ A we have

Fγ,n(t)(a) = E
(
ργ,n(π(a)λt)λ

∗
t

) γ,n−→ E(π(a)λtt−1) = a.

It remains to show that each Fγ,n is a Herz–Schur (A,G, α)-multiplier
and ‖SFγ,n‖cb = ‖ργ,n‖cb. Write the completely bounded maps ργ,n as
ργ,n(·) = W ∗γ,nΨγ,n(·)Vγ,n, where Vγ,n,Wγ,n are bounded operators and Ψγ,n
is a representation. To see that Fγ,n is a Herz–Schur (A,G, α)-multiplier
calculate

N (Fγ,n)(s, t)(a) = αt−1

(
E(ργ,n(π(αt(a))λts−1)λst−1)

)
= αt−1

(
E(ργ,n(λtπ(a)λs−1)λst−1)

)
= E

(
λt−1ργ,n(λtπ(a)λs−1)λs

)
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= E
(
λt−1W ∗γ,nΨγ,n(λt)Ψγ,n(π(a))Ψγ,n(λs−1)Vγ,nλs

)
= U∗λt−1W ∗γ,nΨγ,n(λt)Ψγ,n(π(a))Ψγ,n(λs−1)Vγ,nλsU

=Wγ,n(t)
∗Ψγ,n(π(a))Vγ,n(s),

where U : H → `2(G)⊗H, ξ 7→ δe ⊗ ξ, and
Vγ,n(s) := Ψγ,n(λs−1)Vγ,nλsU, Wγ,n(t) := Ψγ,n(λt−1)Wγ,nλtU,

so Fγ,n is a Herz–Schur (A,G, α)-multiplier by Theorem 2.3.
For the norm equality let (el)Λ be an orthonormal basis for H, let
V : `2(G)⊗H → `2(G)⊗ `2(G)⊗H, δg ⊗ el 7→ δg ⊗ δg ⊗ el,

where {δg : g ∈ G} denotes the canonical orthonormal basis for `2(G), and
let τ denote the coaction

τ : Aoα,r G→ C∗r (G)⊗min Aoα,r G, π(a)λt 7→ λGt ⊗ π(a)λt,
for all a ∈ A, t ∈ G. We claim

(8) SFγ,n(x) = V ∗(id⊗ ργ,n)τ(x)V, x ∈ Aoα,r G,

which implies SFγ,n is completely bounded, with ‖SFγ,n‖cb = ‖ργ,n‖cb. To
prove the claim we first assume ργ,n has one-dimensional range generated by
π(b)λr for some b ∈ A, r ∈ G. Then, for x, y ∈ G, l,m ∈ Λ,

〈V ∗(id⊗ ργ,n)τ(π(a)λt)V (δx ⊗ em), δy ⊗ el〉
= 〈λt ⊗ ργ,n(π(a)λt)(δx ⊗ δx ⊗ em), δy ⊗ δy ⊗ el〉
= 〈δtx, δy〉〈ργ,n(π(a)λt)(δx ⊗ em), δy ⊗ el〉
= 〈δtx, δy〉〈π(b)λr(δx ⊗ em), δy ⊗ el〉
= 〈δtx, δy〉〈π(b)λr(δx ⊗ em)(y), el〉
= 〈δtx, δy〉〈αy−1(b)em, el〉〈δrx, δy〉.

On the other hand,

〈SFγ,n(π(a)λt)(δx ⊗ em), δy ⊗ el〉
= 〈π(Fγ,n(t)(a))λt(δx ⊗ em), δy ⊗ el〉
=
〈
π(E(ργ,n(π(a)λt)λt−1))λt(δx ⊗ em), δy ⊗ el

〉
=
〈
π(E(π(b)λrt−1))λt(δx ⊗ em), δy ⊗ el

〉
= 〈δr, δt〉〈π(b)λt(δx ⊗ em), δy ⊗ el〉
= 〈δr, δt〉〈αy−1(b)em, el〉〈δtx, δy〉.

It follows that V ∗(id ⊗ ργ,n)τ(π(a)λt)V = SFγ,n(π(a)λt). By linearity and
continuity we obtain (8) when ργ,n has one-dimensional range. The linearity
of the inner product then implies that (8) holds in the general case that
ργ,n takes values in span{π(bi)λri : i = 1, . . . , k}. The equality ‖SFγ,n‖cb =
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‖ργ,n‖cb follows, so (Fγ,n) is a net satisfying weak amenability of (A,G, α).
It also follows that Λcb(A,G, α) ≤ Λcb(Aoα,r G).

Remark 4.4. The constant Λcb introduced in Definition 4.1 reduces to
the familiar constants defined in Section 1 in degenerate cases. Indeed, if G is
a discrete group such that the system (C, G, 1) is weakly amenable then G is
weakly amenable by Remark 4.2 or Theorem 4.3; moreover, by Theorem 4.3,

Λcb(C, G, 1) = Λcb(Co1,r G) = Λcb(C
∗
r (G)) = Λcb(G).

Similarly, if the C∗-dynamical system (A, {e}, 1) is weakly amenable then

Λcb(A, {e}, 1) = Λcb(Ao1,r {e}) = Λcb(A).

In fact, Sinclair–Smith [15, Theorem 3.4] have shown that for an amenable
discrete group G, Λcb(A oα,r G) = Λcb(A), so when (A,G, α) is a discrete
C∗-dynamical system with G amenable, we have

Λcb(A,G, α) = Λcb(Aoα,r G) = Λcb(A).

We now turn to characterising weak amenability of W ∗-dynamical sys-
tems.

Lemma 4.5. Let (M,G, β) be a W ∗-dynamical system, with G a discrete
group, and (Fi) a net of Herz–Schur id-multipliers of the underlying C∗-
dynamical system (Mβ, G, β). The following are equivalent:

(i) Fi(t)(a)
i→ a in the weak∗ topology for all t ∈ G, a ∈ M (equation (3)

above);
(ii) sFiu

i→ u in Aid(M,G, β) for all u ∈ Aid(M,G, β).

Proof. (i)⇒(ii). By Remark 3.2 finitely supported functions are dense
in Aid(M,G, β), so it suffices to prove the claim for singly supported u ∈
Aid(M,G, β). Suppose u ∈ Aid(M,G, β) is supported on {s} and u(t)(a) =∑∞

n=1〈π(a)λtξn, ηn〉 (t ∈ G, a ∈M) for some families satisfying
∑∞

n=1 ‖ξn‖2
< ∞ and

∑∞
n=1 ‖ηn‖2 < ∞. Since λs is an isometry, it follows that the

functional in π(M)∗ given by π(a) 7→
∑∞

n=1〈π(a)λsξn, ηn〉 has the same
norm as u; thus ‖u(s)‖ = ‖u‖A. Since sFiu is also supported on {s}, we have

‖sFiu− u‖A = ‖u(s) ◦ Fi(s)− u(s)‖ = sup
‖a‖≤1

|u(s)(Fi(s)(a)− a)|
i→ 0.

Condition (ii) follows.
(ii)⇒(i). For any a ∈ A, t ∈ G and u ∈ Aid(M,G, β),

|〈π(Fi(t)(a))λt − π(a)λt, u〉| = |〈π(a)λt, sFiu〉 − 〈π(a)λt, u〉|
i→ 0,

so u(t)(Fi(t)(a))
i→ u(t)(a). As u varies, u(t) can take any value in M∗; thus

Fi(t)(a) converges to a in the weak∗ topology.
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Theorem 4.6. Let G be a discrete group, M ⊆ B(HM ) a von Neumann
algebra acting on a separable Hilbert space, and (M,G, β) a W ∗-dynamical
system. Consider the conditions:

(i) (M,G, β) is weakly amenable;
(ii) M ovN

β G has the weak∗ completely bounded approximation property.

Then (i)⇒(ii). If G is weakly amenable then (i)⇒(ii).

Proof. (i)⇒(ii). Suppose that (Fi) is a net of Herz–Schur id-multipliers
of the underlying C∗-dynamical system (Mβ, G, β) satisfying Definition 4.1.
Then the associated net (SFi) of maps on M ovN

β G is completely bounded,
weak∗-continuous, and finite rank. Finally, using the identification of
(M ovN

β G)∗ with Aid(M,G, β), we find that for any u ∈ Aid(M,G, β) and
any T ∈M ovN

β G,
〈SFiT, u〉 = 〈T, sFiu〉

i→ 〈T, u〉
by Lemma 4.5, so SFiT converges to T in the weak∗ topology.

(ii)⇒(i). Suppose M ovN
β G has the weak∗ CBAP. Given a finite set

E ⊆ G, ε > 0, and a collection Ω ⊆ M∗, choose ρ : M ovN
β G → M ovN

β G
such that

(9) F : G→ CBσ(Mβ), F (t)(a) := E(ρ(π(a)λt)λt−1), a ∈M, t ∈ G,
satisfies |ω(a − F (t)(a))| < ε for all a ∈ M , t ∈ E, ω ∈ Ω. In this way
we produce a net (Fi), indexed by triples of the form (E, ε,Ω), such that
Fi(t)(a) → a in the weak∗ topology. For each t ∈ G, F (t) defined above is
a finite rank map on M as in the proof of Theorem 4.3; indeed, suppose
ρ =

∑k
j=1 φj ⊗ Tj , where φj is a functional and Tj ∈M ovN

β G. Then

F (t)(a) = E
(
ρ(π(a)λt)λt−1

)
=

k∑
j=1

φj(π(a)λt)E(Tjλt−1),

so that {E(Tjλt−1) : j = 1, . . . , k} spans ranF (t). Similar calculations to
those in the proof of Theorem 4.3 show that ‖SF ‖cb = ‖ρ‖cb and F is a Herz–
Schur (Mβ, G, β)-multiplier. Each SF is a composition of weak∗-continuous
maps, so is weak∗-extendable. Thus the net (Fi) satisfies all the conditions of
weak amenability of (M,G, β) except that it may not be finitely supported.
To correct this we use the assumption that G is weakly amenable. Let (ϕj)
be a net of functions on G implementing weak amenability. Define another
net, indexed by the product directed set,

Fi,j : G→ CBσ(M), Fi,j(t)(a) := ϕj(t)Fi(t)(a), t ∈ G, a ∈M,

which is a net of Herz–Schur id-multipliers of (Mβ, G, β) such that SFi,j =
Sϕj ◦SFi . From the properties of ϕj and Fi we deduce that each Fi,j is finitely
supported, Fi,j(t) is finite rank for all t ∈ G, and Fi,j(t)(a) converges to a in
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the weak∗ topology. Finally, ‖Fi,j‖HS = ‖SFi,j‖cb ≤ ‖Sϕj‖cb‖SFi‖cb, so the
net is uniformly bounded.

Remarks 4.7. (I) In the proof of (ii)⇒(i) above we required weak amen-
ability of G; to see why this requirement arose let us return to the proof
of Theorem 4.3. There we are able to approximate in norm the opera-
tors ργ , which implement the CBAP of A oα,r G, by operators ργ,n with
finite-dimensional range spanned by elements of the form π(a)λt, such that
‖ργ,n‖cb is closely related to ‖ργ‖cb; these estimates allowed us to identify the
support and Herz–Schur norm of Fγ,n. Such norm estimates are not available
in the setting of Theorem 4.6, so the extra hypothesis seems to be required
to use the techniques in this paper.

(II) If in the above proof we make the stronger assumption Λcb(G) = 1
then the net (ϕi,n) may be chosen such that ‖Sϕi,n‖cb is uniformly bounded
by 1. With this assumption on G we obtain ΛvN

cb (M,G, β) ≤ Λcb(M ovN
β G),

where ΛvN
cb is the natural weak amenability constant of a W ∗-dynamical sys-

tem. It follows that if Λcb(G)=1 then we have ΛvN
cb (M,G, β)=Λcb(MovN

β G).
It would be interesting to have a characterisation of when these two weak
amenability constants coincide.

Suppose that (A,G, α) is a C∗-dynamical system with G an amenable
discrete group and A a nuclear C∗-algebra. It is well-known (e.g. Brown–
Ozawa [4, Theorem 4.2.6]) that this implies Aoα,r G is nuclear. It is natu-
ral to ask if this fact persists for weak amenability and the CBAP: do the
CBAP for A and weak amenability of G imply that Aoα,rG has the CBAP?
Haagerup–Kraus [10, Remark 3.10] give an example of a W ∗-dynamical sys-
tem showing that in general this is not true, which we reproduce here as a
C∗-dynamical system. Both SL(2,Z) and Z2 are weakly amenable, but their
semidirect product Z2 oµ SL(2,Z) is not [10, p. 670] (µ denotes the usual
action of SL(2,Z) on Z2). Since the C∗-algebras C∗r (Z2) oµ,r SL(2,Z) and
C∗r (Z2 oµ SL(2,Z)) are isomorphic, it follows that the crossed product of a
C∗-algebra with the CBAP by a weakly amenable group need not have the
CBAP.

Sinclair–Smith [15] have shown that if G is amenable and A has the
CBAP then Aoα,rG has the CBAP. To finish this paper we give an example
of an additional assumption under which this implication can be recovered
for weakly amenable groups.

Proposition 4.8. Let (A,G, α) be a C∗-dynamical system with G a dis-
crete group. The following are equivalent:

(i) G is weakly amenable, A has the CBAP and the approximating maps
φi : A→ A satisfy φi ◦ αt = αt ◦ φi for all t ∈ G and all i;
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(ii) the system (A,G, α) is weakly amenable and for all r, t ∈ G and all i the
approximating Herz–Schur (A,G, α)-multipliers Fi : G→ CB(A) satisfy
Fi(t)(αr(a)) = αr(Fi(t)(a)).

Proof. (i)⇒(ii). The condition on the maps (φi) implies that the map

φ̃i : Aoα,rG→ Aoα,rG,
∑
t

π(at)λt 7→
∑
t

π(φi(at))λt, at ∈ A, t ∈ G,

can be identified with the restriction of I`2(G) ⊗ φi on B(`2(G)) ⊗min A to
A oα,r G. It follows from [6, Lemma 1.5] that φ̃i is completely bounded
and ‖φ̃i‖cb ≤ ‖φi‖cb. Let (vγ) be a net of scalar-valued functions on G
satisfying weak amenability of G and let Svγ be the completely bounded map
on Aoα,r G associated to the (classical) Herz–Schur multiplier vγ as in [13,
Proposition 4.1]. Denote by Sγ,i the composition Svγ ◦ φ̃i. These implement
the CBAP for Aoα,r G; indeed, if supi ‖φi‖cb ≤ C1 and supγ ‖vγ‖Mcb ≤ C2

then sup ‖Sγ,i‖cb ≤ C1C2, each Sγ,i is finite rank, and for any T ∈ Aoα,rG,

‖Sγ,i(T )− T‖ ≤ ‖Svγ (φ̃i(T ))− Svγ (T )‖+ ‖Svγ (T )− T‖

≤ C2‖φ̃i(T )− T‖+ ‖Svγ (T )− T‖
γ,i−→ 0.

It follows from Theorem 4.3 that the system (A,G, α) is weakly amenable. To
prove the covariance condition we first calculate the form of the Herz–Schur
(A,G, α)-multipliers defined in the proof of Theorem 4.3:

Fγ,i(t)(a) := E(Sγ,i(π(a)λt)λ∗t ) = E
(
π(vγ(t)φi(a))

)
= vγ(t)φi(a).

Thus, for any r ∈ G,

αr(Fγ,i(t)(a)) = vγ(t)αr(φi(a)) = vγ(t)φi(αr(a)) = Fγ,i(t)(αr(a)).

(ii)⇒(i). Let (Fi) be a net of Herz–Schur (A,G, α)-multipliers satisfy-
ing weak amenability of the system and the covariance condition. Weak
amenability of G follows as in Remark 4.2. Define

φi : A→ A, a 7→ E(SFi(π(a))), a ∈ A,

to obtain a net of maps easily seen to satisfy the CBAP for A. Now calculate

φi(αt(a)) = E
(
SFi(π(αt(a)))

)
= E

(
π(Fi(e)(αt(a)))

)
= E

(
π(αt(Fi(e)(a)))

)
= αt(Fi(e)(a)) = αt

(
E(SFi(π(a)))

)
= αt(φi(a)),

as required.
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